These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 29262374)

  • 21. Effect of fractional blood flow on plasma skimming in the microvasculature.
    Yang J; Yoo SS; Lee TR
    Phys Rev E; 2017 Apr; 95(4-1):040401. PubMed ID: 28505807
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Predicting bifurcation angle effect on blood flow in the microvasculature.
    Yang J; Pak YE; Lee TR
    Microvasc Res; 2016 Nov; 108():22-8. PubMed ID: 27389627
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Numerical simulation of the vascular structure dependence of blood flow in the kidney.
    Deng W; Tsubota KI
    Med Eng Phys; 2022 Jun; 104():103809. PubMed ID: 35641074
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Observations on the accuracy of photometric techniques used to measure some in vivo microvascular blood flow parameters.
    Cokelet GR; Pries AR; Kiani MF
    Microcirculation; 1998; 5(1):61-70. PubMed ID: 9702723
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A hybrid discrete-continuum approach for modelling microcirculatory blood flow.
    Shipley RJ; Smith AF; Sweeney PW; Pries AR; Secomb TW
    Math Med Biol; 2020 Feb; 37(1):40-57. PubMed ID: 30892609
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Model Microvascular Networks Can Have Many Equilibria.
    Karst NJ; Geddes JB; Carr RT
    Bull Math Biol; 2017 Mar; 79(3):662-681. PubMed ID: 28176185
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Correlation of hemodynamics in macrocirculation and microcirculation.
    Chien S; Lipowsky HH
    Int J Microcirc Clin Exp; 1982; 1(4):351-65. PubMed ID: 6765280
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Partitioning of red blood cell aggregates in bifurcating microscale flows.
    Kaliviotis E; Sherwood JM; Balabani S
    Sci Rep; 2017 Mar; 7():44563. PubMed ID: 28303921
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structure and hemodynamics of microvascular networks: heterogeneity and correlations.
    Pries AR; Secomb TW; Gaehtgens P
    Am J Physiol; 1995 Nov; 269(5 Pt 2):H1713-22. PubMed ID: 7503269
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Theoretical comparison of wall-derived and erythrocyte-derived mechanisms for metabolic flow regulation in heterogeneous microvascular networks.
    Roy TK; Pries AR; Secomb TW
    Am J Physiol Heart Circ Physiol; 2012 May; 302(10):H1945-52. PubMed ID: 22408023
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Three-dimensional computational modeling of multiple deformable cells flowing in microvessels.
    Doddi SK; Bagchi P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Apr; 79(4 Pt 2):046318. PubMed ID: 19518344
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Determinants of regional myocardial oxygen supply in the left ventricle. An experimental study in the in situ working canine heart.
    Eliasen P
    Dan Med Bull; 1987 Dec; 34(6):277-89. PubMed ID: 3325232
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hematocrit, viscosity and velocity distributions of aggregating and non-aggregating blood in a bifurcating microchannel.
    Sherwood JM; Kaliviotis E; Dusting J; Balabani S
    Biomech Model Mechanobiol; 2014 Apr; 13(2):259-73. PubMed ID: 23114881
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of flowing RBCs on adhesion of a circulating tumor cell in microvessels.
    Xiao LL; Liu Y; Chen S; Fu BM
    Biomech Model Mechanobiol; 2017 Apr; 16(2):597-610. PubMed ID: 27738841
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Influence of feeding hematocrit and perfusion pressure on hematocrit reduction (Fåhraeus effect) in an artificial microvascular network.
    Reinhart WH; Piety NZ; Shevkoplyas SS
    Microcirculation; 2017 Nov; 24(8):. PubMed ID: 28801994
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hemodynamics in stenotic vessels of small diameter under steady state conditions: Effect of viscoelasticity and migration of red blood cells.
    Dimakopoulos Y; Kelesidis G; Tsouka S; Georgiou GC; Tsamopoulos J
    Biorheology; 2015; 52(3):183-210. PubMed ID: 26406781
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fluctuations in microvascular blood flow parameters caused by hemodynamic mechanisms.
    Kiani MF; Pries AR; Hsu LL; Sarelius IH; Cokelet GR
    Am J Physiol; 1994 May; 266(5 Pt 2):H1822-8. PubMed ID: 8203581
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Rheology in the microcirculation in normal and low flow states.
    Chien S
    Adv Shock Res; 1982; 8():71-80. PubMed ID: 7136948
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A fully analytical approach to investigate the electro-viscous effect of the endothelial glycocalyx layer on the microvascular blood flow.
    Khosravi A; Shirazi HA; Asnafi A; Karimi A
    Clin Chim Acta; 2017 Sep; 472():5-12. PubMed ID: 28694125
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Viscous resistance to blood flow in solid tumors: effect of hematocrit on intratumor blood viscosity.
    Sevick EM; Jain RK
    Cancer Res; 1989 Jul; 49(13):3513-9. PubMed ID: 2731173
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.