These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 29262682)

  • 1. The Interplay between Structural Stability and Plasticity Determines Mutation Profiles and Chaperone Dependence in Protein Kinases.
    Paladino A; Marchetti F; Ponzoni L; Colombo G
    J Chem Theory Comput; 2018 Feb; 14(2):1059-1070. PubMed ID: 29262682
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ensemble-based modeling and rigidity decomposition of allosteric interaction networks and communication pathways in cyclin-dependent kinases: Differentiating kinase clients of the Hsp90-Cdc37 chaperone.
    Stetz G; Tse A; Verkhivker GM
    PLoS One; 2017; 12(11):e0186089. PubMed ID: 29095844
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Hsp90 chaperone machinery: conformational dynamics and regulation by co-chaperones.
    Li J; Soroka J; Buchner J
    Biochim Biophys Acta; 2012 Mar; 1823(3):624-35. PubMed ID: 21951723
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational modeling of allosteric regulation in the hsp90 chaperones: a statistical ensemble analysis of protein structure networks and allosteric communications.
    Blacklock K; Verkhivker GM
    PLoS Comput Biol; 2014 Jun; 10(6):e1003679. PubMed ID: 24922508
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dual inhibition of chaperoning process by taxifolin: molecular dynamics simulation study.
    Verma S; Singh A; Mishra A
    J Mol Graph Model; 2012 Jul; 37():27-38. PubMed ID: 22609743
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Atomistic simulations and network-based modeling of the Hsp90-Cdc37 chaperone binding with Cdk4 client protein: A mechanism of chaperoning kinase clients by exploiting weak spots of intrinsically dynamic kinase domains.
    Czemeres J; Buse K; Verkhivker GM
    PLoS One; 2017; 12(12):e0190267. PubMed ID: 29267381
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The complex dance of the molecular chaperone Hsp90.
    Neckers L; Mollapour M; Tsutsumi S
    Trends Biochem Sci; 2009 May; 34(5):223-6. PubMed ID: 19359180
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Allosteric Regulation Points Control the Conformational Dynamics of the Molecular Chaperone Hsp90.
    Rehn A; Moroni E; Zierer BK; Tippel F; Morra G; John C; Richter K; Colombo G; Buchner J
    J Mol Biol; 2016 Nov; 428(22):4559-4571. PubMed ID: 27663270
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The HSP90 chaperone machinery.
    Schopf FH; Biebl MM; Buchner J
    Nat Rev Mol Cell Biol; 2017 Jun; 18(6):345-360. PubMed ID: 28429788
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probing molecular mechanisms of the Hsp90 chaperone: biophysical modeling identifies key regulators of functional dynamics.
    Dixit A; Verkhivker GM
    PLoS One; 2012; 7(5):e37605. PubMed ID: 22624053
    [TBL] [Abstract][Full Text] [Related]  

  • 11. HSP90 at the hub of protein homeostasis: emerging mechanistic insights.
    Taipale M; Jarosz DF; Lindquist S
    Nat Rev Mol Cell Biol; 2010 Jul; 11(7):515-28. PubMed ID: 20531426
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanistic Asymmetry in Hsp90 Dimers.
    Flynn JM; Mishra P; Bolon DN
    J Mol Biol; 2015 Sep; 427(18):2904-11. PubMed ID: 25843003
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hsp90 interaction with clients.
    Karagöz GE; Rüdiger SG
    Trends Biochem Sci; 2015 Feb; 40(2):117-25. PubMed ID: 25579468
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hsp90 promotes kinase evolution.
    Lachowiec J; Lemus T; Borenstein E; Queitsch C
    Mol Biol Evol; 2015 Jan; 32(1):91-9. PubMed ID: 25246701
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dissecting Molecular Principles of the Hsp90 Chaperone Regulation by Allosteric Modulators Using a Hierarchical Simulation Approach and Network Modeling of Allosteric Interactions: Conformational Selection Dictates the Diversity of Protein Responses and Ligand-Specific Functional Mechanisms.
    Astl L; Stetz G; Verkhivker GM
    J Chem Theory Comput; 2020 Oct; 16(10):6656-6677. PubMed ID: 32941034
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Domain-mediated dimerization of the Hsp90 cochaperones Harc and Cdc37.
    Roiniotis J; Masendycz P; Ho S; Scholz GM
    Biochemistry; 2005 May; 44(17):6662-9. PubMed ID: 15850399
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure and mechanism of the Hsp90 molecular chaperone machinery.
    Pearl LH; Prodromou C
    Annu Rev Biochem; 2006; 75():271-94. PubMed ID: 16756493
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimentally guided structural modeling and dynamics analysis of Hsp90-p53 interactions: allosteric regulation of the Hsp90 chaperone by a client protein.
    Blacklock K; Verkhivker GM
    J Chem Inf Model; 2013 Nov; 53(11):2962-78. PubMed ID: 24191708
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular analysis of Plasmodium falciparum co-chaperone Aha1 supports its interaction with and regulation of Hsp90 in the malaria parasite.
    Chua CS; Low H; Lehming N; Sim TS
    Int J Biochem Cell Biol; 2012 Jan; 44(1):233-45. PubMed ID: 22100910
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of molecular chaperones in biogenesis of the protein kinome.
    Mandal AK; Theodoraki MA; Nillegoda NB; Caplan AJ
    Methods Mol Biol; 2011; 787():75-81. PubMed ID: 21898228
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.