These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 29262684)

  • 1. Surface-Enhanced Infrared Absorption: Pushing the Frontier for On-Chip Gas Sensing.
    Chong X; Zhang Y; Li E; Kim KJ; Ohodnicki PR; Chang CH; Wang AX
    ACS Sens; 2018 Jan; 3(1):230-238. PubMed ID: 29262684
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasmonic nanopatch array with integrated metal-organic framework for enhanced infrared absorption gas sensing.
    Chong X; Kim KJ; Zhang Y; Li E; Ohodnicki PR; Chang CH; Wang AX
    Nanotechnology; 2017 Jun; 28(26):26LT01. PubMed ID: 28524821
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metal-Organic Framework Thin Film Coated Optical Fiber Sensors: A Novel Waveguide-Based Chemical Sensing Platform.
    Kim KJ; Lu P; Culp JT; Ohodnicki PR
    ACS Sens; 2018 Feb; 3(2):386-394. PubMed ID: 29303556
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metal-Organic Framework-Surface-Enhanced Infrared Absorption Platform Enables Simultaneous On-Chip Sensing of Greenhouse Gases.
    Zhou H; Hui X; Li D; Hu D; Chen X; He X; Gao L; Huang H; Lee C; Mu X
    Adv Sci (Weinh); 2020 Oct; 7(20):2001173. PubMed ID: 33101855
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Waveguide-Integrated Compact Plasmonic Resonators for On-Chip Mid-Infrared Laser Spectroscopy.
    Chen C; Mohr DA; Choi HK; Yoo D; Li M; Oh SH
    Nano Lett; 2018 Dec; 18(12):7601-7608. PubMed ID: 30216715
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface enhanced infrared absorption spectroscopy based on gold nanostars and spherical nanoparticles.
    Bibikova O; Haas J; López-Lorente ÁI; Popov A; Kinnunen M; Ryabchikov Y; Kabashin A; Meglinski I; Mizaikoff B
    Anal Chim Acta; 2017 Oct; 990():141-149. PubMed ID: 29029737
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiple-resonant pad-rod nanoantennas for surface-enhanced infrared absorption spectroscopy.
    Yue W; Kravets V; Pu M; Wang C; Zhao Z; Hu Z
    Nanotechnology; 2019 Nov; 30(46):465206. PubMed ID: 31483763
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical nanoantennas for multiband surface-enhanced infrared and Raman spectroscopy.
    D'Andrea C; Bochterle J; Toma A; Huck C; Neubrech F; Messina E; Fazio B; Maragò OM; Di Fabrizio E; Lamy de La Chapelle M; Gucciardi PG; Pucci A
    ACS Nano; 2013 Apr; 7(4):3522-31. PubMed ID: 23530556
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface enhanced infrared spectroscopy with gold strip gratings.
    Wang T; Nguyen VH; Buchenauer A; Schnakenberg U; Taubner T
    Opt Express; 2013 Apr; 21(7):9005-10. PubMed ID: 23571990
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metasurface with metallic nanoantennas and graphene nanoslits for sensing of protein monolayers and sub-monolayers.
    Ye M; Crozier KB
    Opt Express; 2020 Jun; 28(12):18479-18492. PubMed ID: 32680046
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasmonic Vertically Coupled Complementary Antennas for Dual-Mode Infrared Molecule Sensing.
    Chen X; Wang C; Yao Y; Wang C
    ACS Nano; 2017 Aug; 11(8):8034-8046. PubMed ID: 28693314
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Elevating Surface-Enhanced Infrared Absorption with Quantum Mechanical Effects of Plasmonic Nanocavities.
    Huang G; Liu K; Shi G; Guo Q; Li X; Liu Z; Ma W; Wang T
    Nano Lett; 2022 Aug; 22(15):6083-6090. PubMed ID: 35866846
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface-enhanced infrared spectroscopy using metal oxide plasmonic antenna arrays.
    Abb M; Wang Y; Papasimakis N; de Groot CH; Muskens OL
    Nano Lett; 2014 Jan; 14(1):346-52. PubMed ID: 24341902
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrasensitive and Selective Gas Sensor Based on a Channel Plasmonic Structure with an Enormous Hot Spot Region.
    Su DS; Tsai DP; Yen TJ; Tanaka T
    ACS Sens; 2019 Nov; 4(11):2900-2907. PubMed ID: 31602973
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Towards enhanced optical sensor performance: SEIRA and SERS with plasmonic nanostars.
    Bibikova O; Haas J; López-Lorente AI; Popov A; Kinnunen M; Meglinski I; Mizaikoff B
    Analyst; 2017 Mar; 142(6):951-958. PubMed ID: 28229133
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimization of localized surface plasmon resonance hot spots in surface-enhanced infrared absorption spectroscopy aluminum substrate as an optical sensor coupled to chemometric tools for the purity assay of quinary mixtures.
    Eid SM; Hassan SA; Nashat NW; Elghobashy MR; Abbas SS; Moustafa AA
    Mikrochim Acta; 2021 May; 188(6):195. PubMed ID: 34021787
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanoantenna-assisted plasmonic enhancement of IR absorption of vibrational modes of organic molecules.
    Milekhin AG; Cherkasova O; Kuznetsov SA; Milekhin IA; Rodyakina EE; Latyshev AV; Banerjee S; Salvan G; Zahn DRT
    Beilstein J Nanotechnol; 2017; 8():975-981. PubMed ID: 28546892
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Liquid-Metal-Based Nanophotonic Structures for High-Performance SEIRA Sensing.
    Miao X; Luk TS; Liu PQ
    Adv Mater; 2022 Mar; 34(10):e2107950. PubMed ID: 34991178
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays.
    Adato R; Yanik AA; Amsden JJ; Kaplan DL; Omenetto FG; Hong MK; Erramilli S; Altug H
    Proc Natl Acad Sci U S A; 2009 Nov; 106(46):19227-32. PubMed ID: 19880744
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metal-organic framework thin film for enhanced localized surface plasmon resonance gas sensing.
    Kreno LE; Hupp JT; Van Duyne RP
    Anal Chem; 2010 Oct; 82(19):8042-6. PubMed ID: 20839787
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.