BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

572 related articles for article (PubMed ID: 29263098)

  • 21. A translocated protein tyrosine phosphatase of Pseudomonas syringae pv. tomato DC3000 modulates plant defence response to infection.
    Bretz JR; Mock NM; Charity JC; Zeyad S; Baker CJ; Hutcheson SW
    Mol Microbiol; 2003 Jul; 49(2):389-400. PubMed ID: 12828637
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Pseudomonas syringae pv. tomato DC3000 HopPtoM (CEL ORF3) is important for lesion formation but not growth in tomato and is secreted and translocated by the Hrp type III secretion system in a chaperone-dependent manner.
    Badel JL; Nomura K; Bandyopadhyay S; Shimizu R; Collmer A; He SY
    Mol Microbiol; 2003 Sep; 49(5):1239-51. PubMed ID: 12940984
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Pseudomonas syringae pv. tomato exploits light signals to optimize virulence and colonization of leaves.
    Santamaría-Hernando S; Rodríguez-Herva JJ; Martínez-García PM; Río-Álvarez I; González-Melendi P; Zamorano J; Tapia C; Rodríguez-Palenzuela P; López-Solanilla E
    Environ Microbiol; 2018 Dec; 20(12):4261-4280. PubMed ID: 30058114
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A DeoR-Type Transcription Regulator Is Required for Sugar-Induced Expression of Type III Secretion-Encoding Genes in
    Turner SE; Pang YY; O'Malley MR; Weisberg AJ; Fraser VN; Yan Q; Chang JH; Anderson JC
    Mol Plant Microbe Interact; 2020 Mar; 33(3):509-518. PubMed ID: 31829102
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Pseudomonas syringae lytic transglycosylases coregulated with the type III secretion system contribute to the translocation of effector proteins into plant cells.
    Oh HS; Kvitko BH; Morello JE; Collmer A
    J Bacteriol; 2007 Nov; 189(22):8277-89. PubMed ID: 17827286
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Chp8, a diguanylate cyclase from Pseudomonas syringae pv. Tomato DC3000, suppresses the pathogen-associated molecular pattern flagellin, increases extracellular polysaccharides, and promotes plant immune evasion.
    Engl C; Waite CJ; McKenna JF; Bennett MH; Hamann T; Buck M
    mBio; 2014 May; 5(3):e01168-14. PubMed ID: 24846383
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identification of Indole-3-Acetic Acid-Regulated Genes in
    Djami-Tchatchou AT; Li ZA; Stodghill P; Filiatrault MJ; Kunkel BN
    J Bacteriol; 2022 Jan; 204(1):e0038021. PubMed ID: 34662236
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Identification of novel hrp-regulated genes through functional genomic analysis of the Pseudomonas syringae pv. tomato DC3000 genome.
    Zwiesler-Vollick J; Plovanich-Jones AE; Nomura K; Bandyopadhyay S; Joardar V; Kunkel BN; He SY
    Mol Microbiol; 2002 Sep; 45(5):1207-18. PubMed ID: 12207690
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Multiple CsrA Proteins Control Key Virulence Traits in Pseudomonas syringae pv. tomato DC3000.
    Ferreiro MD; Nogales J; Farias GA; Olmedilla A; Sanjuán J; Gallegos MT
    Mol Plant Microbe Interact; 2018 May; 31(5):525-536. PubMed ID: 29261011
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Pseudomonas syringae pv. tomato OxyR Is Required for Virulence in Tomato and Arabidopsis.
    Ishiga Y; Ichinose Y
    Mol Plant Microbe Interact; 2016 Feb; 29(2):119-31. PubMed ID: 26554736
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pseudomonas syringae pv. tomato DC3000 uses constitutive and apoplast-induced nutrient assimilation pathways to catabolize nutrients that are abundant in the tomato apoplast.
    Rico A; Preston GM
    Mol Plant Microbe Interact; 2008 Feb; 21(2):269-82. PubMed ID: 18184070
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Subcellular Localization of Pseudomonas syringae pv. tomato Effector Proteins in Plants.
    Aung K; Xin X; Mecey C; He SY
    Methods Mol Biol; 2017; 1531():141-153. PubMed ID: 27837488
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The ECF sigma factor, PSPTO_1043, in Pseudomonas syringae pv. tomato DC3000 is induced by oxidative stress and regulates genes involved in oxidative stress response.
    Butcher BG; Bao Z; Wilson J; Stodghill P; Swingle B; Filiatrault M; Schneider D; Cartinhour S
    PLoS One; 2017; 12(7):e0180340. PubMed ID: 28700608
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparative transcriptomic analysis of global gene expression mediated by (p) ppGpp reveals common regulatory networks in Pseudomonas syringae.
    Liu J; Yu M; Chatnaparat T; Lee JH; Tian Y; Hu B; Zhao Y
    BMC Genomics; 2020 Apr; 21(1):296. PubMed ID: 32272893
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Multiple approaches to a complete inventory of Pseudomonas syringae pv. tomato DC3000 type III secretion system effector proteins.
    Schechter LM; Vencato M; Jordan KL; Schneider SE; Schneider DJ; Collmer A
    Mol Plant Microbe Interact; 2006 Nov; 19(11):1180-92. PubMed ID: 17073301
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Defining essential processes in plant pathogenesis with Pseudomonas syringae pv. tomato DC3000 disarmed polymutants and a subset of key type III effectors.
    Wei HL; Collmer A
    Mol Plant Pathol; 2018 Jul; 19(7):1779-1794. PubMed ID: 29277959
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Plant flavonoids target Pseudomonas syringae pv. tomato DC3000 flagella and type III secretion system.
    Vargas P; Farias GA; Nogales J; Prada H; Carvajal V; Barón M; Rivilla R; Martín M; Olmedilla A; Gallegos MT
    Environ Microbiol Rep; 2013 Dec; 5(6):841-50. PubMed ID: 24249293
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Pseudomonas syringae effector HopQ1 promotes bacterial virulence and interacts with tomato 14-3-3 proteins in a phosphorylation-dependent manner.
    Li W; Yadeta KA; Elmore JM; Coaker G
    Plant Physiol; 2013 Apr; 161(4):2062-74. PubMed ID: 23417089
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Pseudomonas syringae pv. tomato DC3000 PSPTO_0820 multidrug transporter is involved in resistance to plant antimicrobials and bacterial survival during tomato plant infection.
    Santamaría-Hernando S; Senovilla M; González-Mula A; Martínez-García PM; Nebreda S; Rodríguez-Palenzuela P; López-Solanilla E; Rodríguez-Herva JJ
    PLoS One; 2019; 14(6):e0218815. PubMed ID: 31237890
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Pto- and Prf-mediated recognition of AvrPto and AvrPtoB restricts the ability of diverse pseudomonas syringae pathovars to infect tomato.
    Lin NC; Martin GB
    Mol Plant Microbe Interact; 2007 Jul; 20(7):806-15. PubMed ID: 17601168
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 29.