These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Transcriptome responses in copepods Calanus finmarchicus, Calanus glacialis and Calanus hyperboreus exposed to phenanthrene and benzo[a]pyrene. Yadetie F; Brun NR; Giebichenstein J; Dmoch K; Hylland K; Borgå K; Karlsen OA; Goksøyr A Mar Genomics; 2022 Oct; 65():100981. PubMed ID: 35969942 [TBL] [Abstract][Full Text] [Related]
6. Vertical and geographic distribution of copepod communities at late summer in the Amerasian Basin, Arctic Ocean. Wang YG; Tseng LC; Lin M; Hwang JS PLoS One; 2019; 14(7):e0219319. PubMed ID: 31295285 [TBL] [Abstract][Full Text] [Related]
7. Sea ice decline drives biogeographical shifts of key Calanus species in the central Arctic Ocean. Ershova EA; Kosobokova KN; Banas NS; Ellingsen I; Niehoff B; Hildebrandt N; Hirche HJ Glob Chang Biol; 2021 May; 27(10):2128-2143. PubMed ID: 33605011 [TBL] [Abstract][Full Text] [Related]
8. Unmasking microsatellite deceptiveness and debunking hybridization with SNPs in four marine copepod species of Calanus. Choquet M; Lizano AM; Le Moan A; Ravinet M; Dhanasiri AKS; Hoarau G Mol Ecol; 2023 Dec; 32(24):6854-6873. PubMed ID: 37902127 [TBL] [Abstract][Full Text] [Related]
9. Can a key boreal Calanus copepod species now complete its life-cycle in the Arctic? Evidence and implications for Arctic food-webs. Tarling GA; Freer JJ; Banas NS; Belcher A; Blackwell M; Castellani C; Cook KB; Cottier FR; Daase M; Johnson ML; Last KS; Lindeque PK; Mayor DJ; Mitchell E; Parry HE; Speirs DC; Stowasser G; Wootton M Ambio; 2022 Feb; 51(2):333-344. PubMed ID: 34845624 [TBL] [Abstract][Full Text] [Related]
10. Biogeographic responses of the copepod Calanus glacialis to a changing Arctic marine environment. Feng Z; Ji R; Ashjian C; Campbell R; Zhang J Glob Chang Biol; 2018 Jan; 24(1):e159-e170. PubMed ID: 28869698 [TBL] [Abstract][Full Text] [Related]
11. Comparative study on acute effects of water accommodated fractions of an artificially weathered crude oil on Calanus finmarchicus and Calanus glacialis (Crustacea: Copepoda). Hansen BH; Altin D; Rørvik SF; Øverjordet IB; Olsen AJ; Nordtug T Sci Total Environ; 2011 Jan; 409(4):704-9. PubMed ID: 21130489 [TBL] [Abstract][Full Text] [Related]
12. Warming of Subarctic waters accelerates development of a key marine zooplankton Calanus finmarchicus. Weydmann A; Walczowski W; Carstensen J; Kwaśniewski S Glob Chang Biol; 2018 Jan; 24(1):172-183. PubMed ID: 28801968 [TBL] [Abstract][Full Text] [Related]
13. Ingestion and impact of microplastics on arctic Calanus copepods. Rodríguez-Torres R; Almeda R; Kristiansen M; Rist S; Winding MS; Nielsen TG Aquat Toxicol; 2020 Nov; 228():105631. PubMed ID: 32992089 [TBL] [Abstract][Full Text] [Related]
14. Pan-Arctic Depth Distribution of Diapausing Kvile KØ; Ashjian C; Ji R Biol Bull; 2019 Oct; 237(2):76-89. PubMed ID: 31714854 [TBL] [Abstract][Full Text] [Related]
15. Modelling the biogeographic boundary shift of Calanus finmarchicus reveals drivers of Arctic Atlantification by subarctic zooplankton. Freer JJ; Daase M; Tarling GA Glob Chang Biol; 2022 Jan; 28(2):429-440. PubMed ID: 34652875 [TBL] [Abstract][Full Text] [Related]
16. Daily transcriptomes of the copepod Calanus finmarchicus during the summer solstice at high Arctic latitudes. Payton L; Noirot C; Hoede C; Hüppe L; Last K; Wilcockson D; Ershova EA; Valière S; Meyer B Sci Data; 2020 Nov; 7(1):415. PubMed ID: 33235200 [TBL] [Abstract][Full Text] [Related]
17. Molecular tools prove little auks from Svalbard are extremely selective for Calanus glacialis even when exposed to Atlantification. Balazy K; Trudnowska E; Wojczulanis-Jakubas K; Jakubas D; Præbel K; Choquet M; Brandner MM; Schultz M; Bitz-Thorsen J; Boehnke R; Szeligowska M; Descamps S; Strøm H; Błachowiak-Samołyk K Sci Rep; 2023 Aug; 13(1):13647. PubMed ID: 37607972 [TBL] [Abstract][Full Text] [Related]
18. Delayed effects of pyrene exposure during overwintering on the Arctic copepod Calanus hyperboreus. Toxværd K; Dinh KV; Henriksen O; Hjorth M; Nielsen TG Aquat Toxicol; 2019 Dec; 217():105332. PubMed ID: 31698182 [TBL] [Abstract][Full Text] [Related]
19. Inter- and intraspecific variation in body- and genome size in calanoid copepods from temperate and arctic waters. Leinaas HP; Jalal M; Gabrielsen TM; Hessen DO Ecol Evol; 2016 Aug; 6(16):5585-95. PubMed ID: 27547339 [TBL] [Abstract][Full Text] [Related]
20. Arctic copepod copper sensitivity and comparison with Antarctic and temperate copepods. Heuschele J; Dinh KV; Lode T; Jager T; Borgå K Ecotoxicology; 2024 Nov; 33(9):1026-1038. PubMed ID: 39196504 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]