These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 29263142)

  • 1. Structure and function of urea amidolyase.
    Zhao J; Zhu L; Fan C; Wu Y; Xiang S
    Biosci Rep; 2018 Feb; 38(1):. PubMed ID: 29263142
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-particle analysis of urea amidolyase reveals its molecular mechanism.
    Liu Y; Yuan B; Peng L; Zhao J; Cheng B; Huang Y; Zheng X; Zhou Y; Xiang S; Zhu L; Wu Y
    Protein Sci; 2020 May; 29(5):1242-1249. PubMed ID: 32105377
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystal structure of urea carboxylase provides insights into the carboxyltransfer reaction.
    Fan C; Chou CY; Tong L; Xiang S
    J Biol Chem; 2012 Mar; 287(12):9389-98. PubMed ID: 22277658
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The urea carboxylase and allophanate hydrolase activities of urea amidolyase are functionally independent.
    Lin Y; Boese CJ; St Maurice M
    Protein Sci; 2016 Oct; 25(10):1812-24. PubMed ID: 27452902
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solving the Conundrum: Widespread Proteins Annotated for Urea Metabolism in Bacteria Are Carboxyguanidine Deiminases Mediating Nitrogen Assimilation from Guanidine.
    Schneider NO; Tassoulas LJ; Zeng D; Laseke AJ; Reiter NJ; Wackett LP; Maurice MS
    Biochemistry; 2020 Sep; 59(35):3258-3270. PubMed ID: 32786413
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure and function of allophanate hydrolase.
    Fan C; Li Z; Yin H; Xiang S
    J Biol Chem; 2013 Jul; 288(29):21422-21432. PubMed ID: 23754281
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enzymatic characterization of a prokaryotic urea carboxylase.
    Kanamori T; Kanou N; Atomi H; Imanaka T
    J Bacteriol; 2004 May; 186(9):2532-9. PubMed ID: 15090492
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular evolution of urea amidolyase and urea carboxylase in fungi.
    Strope PK; Nickerson KW; Harris SD; Moriyama EN
    BMC Evol Biol; 2011 Mar; 11():80. PubMed ID: 21447149
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Post-translational processing of urea amidolyase in Saccharomyces cerevisiae.
    Sumrada RA; Chisholm G; Cooper TG
    Mol Cell Biol; 1982 Jul; 2(7):800-4. PubMed ID: 6152837
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Urease-negative uropathogen Kalamiella piersonii YU22 metabolizes urea by urea carboxylase and allophanate hydrolase enzyme system.
    Yuvarajan S; Hameed A; Arun AB; Saptami K; Rekha PD
    Microbiol Res; 2022 Oct; 263():127142. PubMed ID: 35940107
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Urea carboxylase and allophanate hydrolase are components of a multifunctional protein in yeast.
    Sumrada RA; Cooper TG
    J Biol Chem; 1982 Aug; 257(15):9119-27. PubMed ID: 6124544
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Allophanate hydrolase of Oleomonas sagaranensis involved in an ATP-dependent degradation pathway specific to urea.
    Kanamori T; Kanou N; Kusakabe S; Atomi H; Imanaka T
    FEMS Microbiol Lett; 2005 Apr; 245(1):61-5. PubMed ID: 15796980
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Urea amidolyase of Candida utilis. Characterization of the urea cleavage reactions.
    Castric PA; Levenberg B
    Biochim Biophys Acta; 1976 Jul; 438(2):574-83. PubMed ID: 8111
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enzymatic assay for determination of bicarbonate ion in plasma using urea amidolyase.
    Kimura S; Yamanishi H; Iyama S; Yamaguchi Y; Kanakura Y
    Clin Chim Acta; 2003 Feb; 328(1-2):179-84. PubMed ID: 12559615
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Allophanate hydrolase, not urease, functions in bacterial cyanuric acid metabolism.
    Cheng G; Shapir N; Sadowsky MJ; Wackett LP
    Appl Environ Microbiol; 2005 Aug; 71(8):4437-45. PubMed ID: 16085834
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Striking Diversity in Holoenzyme Architecture and Extensive Conformational Variability in Biotin-Dependent Carboxylases.
    Tong L
    Adv Protein Chem Struct Biol; 2017; 109():161-194. PubMed ID: 28683917
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural Analysis of Substrate, Reaction Intermediate, and Product Binding in Haemophilus influenzae Biotin Carboxylase.
    Broussard TC; Pakhomova S; Neau DB; Bonnot R; Waldrop GL
    Biochemistry; 2015 Jun; 54(24):3860-70. PubMed ID: 26020841
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic control of urea catabolism in Chlamydomonas reinhardi and Chlorella pyrenoidosa.
    Hodson RC; Williams SK; Davidson WR
    J Bacteriol; 1975 Mar; 121(3):1022-35. PubMed ID: 1116994
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Snapshot of a phosphorylated substrate intermediate by kinetic crystallography.
    Käck H; Gibson KJ; Lindqvist Y; Schneider G
    Proc Natl Acad Sci U S A; 1998 May; 95(10):5495-500. PubMed ID: 9576910
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pyruvate Occupancy in the Carboxyl Transferase Domain of Pyruvate Carboxylase Facilitates Product Release from the Biotin Carboxylase Domain through an Intermolecular Mechanism.
    Westerhold LE; Adams SL; Bergman HL; Zeczycki TN
    Biochemistry; 2016 Jun; 55(24):3447-60. PubMed ID: 27254467
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.