These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. RANK-Independent Osteoclast Formation and Bone Erosion in Inflammatory Arthritis. O'Brien W; Fissel BM; Maeda Y; Yan J; Ge X; Gravallese EM; Aliprantis AO; Charles JF Arthritis Rheumatol; 2016 Dec; 68(12):2889-2900. PubMed ID: 27563728 [TBL] [Abstract][Full Text] [Related]
4. Caffeic acid 3,4-dihydroxy-phenethyl ester suppresses receptor activator of NF-κB ligand–induced osteoclastogenesis and prevents ovariectomy-induced bone loss through inhibition of mitogen-activated protein kinase/activator protein 1 and Ca2+–nuclear factor of activated T-cells cytoplasmic 1 signaling pathways. Wu X; Li Z; Yang Z; Zheng C; Jing J; Chen Y; Ye X; Lian X; Qiu W; Yang F; Tang J; Xiao J; Liu M; Luo J J Bone Miner Res; 2012 Jun; 27(6):1298-1308. PubMed ID: 22337253 [TBL] [Abstract][Full Text] [Related]
5. Defective microtubule-dependent podosome organization in osteoclasts leads to increased bone density in Pyk2(-/-) mice. Gil-Henn H; Destaing O; Sims NA; Aoki K; Alles N; Neff L; Sanjay A; Bruzzaniti A; De Camilli P; Baron R; Schlessinger J J Cell Biol; 2007 Sep; 178(6):1053-64. PubMed ID: 17846174 [TBL] [Abstract][Full Text] [Related]
6. LGR4 is a receptor for RANKL and negatively regulates osteoclast differentiation and bone resorption. Luo J; Yang Z; Ma Y; Yue Z; Lin H; Qu G; Huang J; Dai W; Li C; Zheng C; Xu L; Chen H; Wang J; Li D; Siwko S; Penninger JM; Ning G; Xiao J; Liu M Nat Med; 2016 May; 22(5):539-46. PubMed ID: 27064449 [TBL] [Abstract][Full Text] [Related]
7. Aging increases stromal/osteoblastic cell-induced osteoclastogenesis and alters the osteoclast precursor pool in the mouse. Cao JJ; Wronski TJ; Iwaniec U; Phleger L; Kurimoto P; Boudignon B; Halloran BP J Bone Miner Res; 2005 Sep; 20(9):1659-68. PubMed ID: 16059637 [TBL] [Abstract][Full Text] [Related]
8. Myristoleic acid inhibits osteoclast formation and bone resorption by suppressing the RANKL activation of Src and Pyk2. Kwon JO; Jin WJ; Kim B; Kim HH; Lee ZH Eur J Pharmacol; 2015 Dec; 768():189-98. PubMed ID: 26528796 [TBL] [Abstract][Full Text] [Related]
9. Ebselen Is a Potential Anti-Osteoporosis Agent by Suppressing Receptor Activator of Nuclear Factor Kappa-B Ligand-Induced Osteoclast Differentiation In vitro and Lipopolysaccharide-Induced Inflammatory Bone Destruction In vivo. Baek JM; Kim JY; Yoon KH; Oh J; Lee MS Int J Biol Sci; 2016; 12(5):478-88. PubMed ID: 27019631 [TBL] [Abstract][Full Text] [Related]
10. Euphorbia factor L1 inhibits osteoclastogenesis by regulating cellular redox status and induces Fas-mediated apoptosis in osteoclast. Hong SE; Lee J; Seo DH; In Lee H; Ri Park D; Lee GR; Jo YJ; Kim N; Kwon M; Shon H; Kyoung Seo E; Kim HS; Young Lee S; Jeong W Free Radic Biol Med; 2017 Nov; 112():191-199. PubMed ID: 28774817 [TBL] [Abstract][Full Text] [Related]
12. Impaired bone resorption in cathepsin K-deficient mice is partially compensated for by enhanced osteoclastogenesis and increased expression of other proteases via an increased RANKL/OPG ratio. Kiviranta R; Morko J; Alatalo SL; NicAmhlaoibh R; Risteli J; Laitala-Leinonen T; Vuorio E Bone; 2005 Jan; 36(1):159-72. PubMed ID: 15664014 [TBL] [Abstract][Full Text] [Related]
13. DNA methyltransferase 3a regulates osteoclast differentiation by coupling to an S-adenosylmethionine-producing metabolic pathway. Nishikawa K; Iwamoto Y; Kobayashi Y; Katsuoka F; Kawaguchi S; Tsujita T; Nakamura T; Kato S; Yamamoto M; Takayanagi H; Ishii M Nat Med; 2015 Mar; 21(3):281-7. PubMed ID: 25706873 [TBL] [Abstract][Full Text] [Related]
14. Inhibition of osteoclast bone resorption activity through osteoprotegerin-induced damage of the sealing zone. Song R; Gu J; Liu X; Zhu J; Wang Q; Gao Q; Zhang J; Cheng L; Tong X; Qi X; Yuan Y; Liu Z Int J Mol Med; 2014 Sep; 34(3):856-62. PubMed ID: 25017214 [TBL] [Abstract][Full Text] [Related]
15. Disruption of NF-κB1 prevents bone loss caused by mechanical unloading. Nakamura H; Aoki K; Masuda W; Alles N; Nagano K; Fukushima H; Osawa K; Yasuda H; Nakamura I; Mikuni-Takagaki Y; Ohya K; Maki K; Jimi E J Bone Miner Res; 2013 Jun; 28(6):1457-67. PubMed ID: 23322687 [TBL] [Abstract][Full Text] [Related]
16. Piperine alleviates osteoclast formation through the p38/c-Fos/NFATc1 signaling axis. Deepak V; Kruger MC; Joubert A; Coetzee M Biofactors; 2015; 41(6):403-13. PubMed ID: 26627060 [TBL] [Abstract][Full Text] [Related]
17. Critical role of beta3 integrin in experimental postmenopausal osteoporosis. Zhao H; Kitaura H; Sands MS; Ross FP; Teitelbaum SL; Novack DV J Bone Miner Res; 2005 Dec; 20(12):2116-23. PubMed ID: 16294265 [TBL] [Abstract][Full Text] [Related]
18. Bajijiasu Abrogates Osteoclast Differentiation via the Suppression of RANKL Signaling Pathways through NF-κB and NFAT. Hong G; Zhou L; Shi X; He W; Wang H; Wei Q; Chen P; Qi L; Tickner J; Lin L; Xu J Int J Mol Sci; 2017 Jan; 18(1):. PubMed ID: 28106828 [TBL] [Abstract][Full Text] [Related]
19. NFATc1: functions in osteoclasts. Zhao Q; Wang X; Liu Y; He A; Jia R Int J Biochem Cell Biol; 2010 May; 42(5):576-9. PubMed ID: 20035895 [TBL] [Abstract][Full Text] [Related]
20. The Rho GTPase Wrch1 regulates osteoclast precursor adhesion and migration. Brazier H; Pawlak G; Vives V; Blangy A Int J Biochem Cell Biol; 2009 Jun; 41(6):1391-401. PubMed ID: 19135548 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]