BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

605 related articles for article (PubMed ID: 29263736)

  • 1. Oxidative stress in bone remodeling: role of antioxidants.
    Domazetovic V; Marcucci G; Iantomasi T; Brandi ML; Vincenzini MT
    Clin Cases Miner Bone Metab; 2017; 14(2):209-216. PubMed ID: 29263736
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxidative Stress and Natural Antioxidants in Osteoporosis: Novel Preventive and Therapeutic Approaches.
    Marcucci G; Domazetovic V; Nediani C; Ruzzolini J; Favre C; Brandi ML
    Antioxidants (Basel); 2023 Feb; 12(2):. PubMed ID: 36829932
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calcium metabolism and oxidative stress in bone fractures: role of antioxidants.
    Sheweita SA; Khoshhal KI
    Curr Drug Metab; 2007 Jun; 8(5):519-25. PubMed ID: 17584023
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Blueberry juice protects osteocytes and bone precursor cells against oxidative stress partly through SIRT1.
    Domazetovic V; Marcucci G; Pierucci F; Bruno G; Di Cesare Mannelli L; Ghelardini C; Brandi ML; Iantomasi T; Meacci E; Vincenzini MT
    FEBS Open Bio; 2019 Jun; 9(6):1082-1096. PubMed ID: 31006177
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Autophagy in Bone Remodeling: A Regulator of Oxidative Stress.
    Zhu C; Shen S; Zhang S; Huang M; Zhang L; Chen X
    Front Endocrinol (Lausanne); 2022; 13():898634. PubMed ID: 35846332
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pseurotin A Inhibits Osteoclastogenesis and Prevents Ovariectomized-Induced Bone Loss by Suppressing Reactive Oxygen Species.
    Chen K; Qiu P; Yuan Y; Zheng L; He J; Wang C; Guo Q; Kenny J; Liu Q; Zhao J; Chen J; Tickner J; Fan S; Lin X; Xu J
    Theranostics; 2019; 9(6):1634-1650. PubMed ID: 31037128
    [No Abstract]   [Full Text] [Related]  

  • 7. Dimethyl fumarate inhibits osteoclasts via attenuation of reactive oxygen species signalling by augmented antioxidation.
    Yamaguchi Y; Kanzaki H; Katsumata Y; Itohiya K; Fukaya S; Miyamoto Y; Narimiya T; Wada S; Nakamura Y
    J Cell Mol Med; 2018 Feb; 22(2):1138-1147. PubMed ID: 29063666
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antioxidants Maintain Cellular Redox Homeostasis by Elimination of Reactive Oxygen Species.
    He L; He T; Farrar S; Ji L; Liu T; Ma X
    Cell Physiol Biochem; 2017; 44(2):532-553. PubMed ID: 29145191
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Blueberry Juice Antioxidants Protect Osteogenic Activity against Oxidative Stress and Improve Long-Term Activation of the Mineralization Process in Human Osteoblast-Like SaOS-2 Cells: Involvement of SIRT1.
    Domazetovic V; Marcucci G; Falsetti I; Bilia AR; Vincenzini MT; Brandi ML; Iantomasi T
    Antioxidants (Basel); 2020 Feb; 9(2):. PubMed ID: 32024159
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protective role of benzoselenophene derivatives of resveratrol on the induced oxidative stress in intestinal myofibroblasts and osteocytes.
    Domazetovic V; Fontani F; Tanini D; D'Esopo V; Viglianisi C; Marcucci G; Panzella L; Napolitano A; Brandi ML; Capperucci A; Menichetti S; Vincenzini MT; Iantomasi T
    Chem Biol Interact; 2017 Sep; 275():13-21. PubMed ID: 28735861
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antioxidant alpha-lipoic acid inhibits osteoclast differentiation by reducing nuclear factor-kappaB DNA binding and prevents in vivo bone resorption induced by receptor activator of nuclear factor-kappaB ligand and tumor necrosis factor-alpha.
    Kim HJ; Chang EJ; Kim HM; Lee SB; Kim HD; Su Kim G; Kim HH
    Free Radic Biol Med; 2006 May; 40(9):1483-93. PubMed ID: 16632109
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Estradiol significantly increases the expression of antioxidant enzymes in osteoporotic rats and osteoblasts in vitro].
    Zhou XJ; Xia Y; Zhao YY; Gu WQ; Xiao X; Bai XC; Liu J; Li M
    Nan Fang Yi Ke Da Xue Xue Bao; 2018 Apr; 38(4):402-408. PubMed ID: 29735439
    [TBL] [Abstract][Full Text] [Related]  

  • 13. β-Adrenergic signaling stimulates osteoclastogenesis via reactive oxygen species.
    Kondo H; Takeuchi S; Togari A
    Am J Physiol Endocrinol Metab; 2013 Mar; 304(5):E507-15. PubMed ID: 23169789
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antioxidant Vitamins and Ageing.
    Milisav I; Ribarič S; Poljsak B
    Subcell Biochem; 2018; 90():1-23. PubMed ID: 30779004
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glutathione, N-acetylcysteine and lipoic acid down-regulate starvation-induced apoptosis, RANKL/OPG ratio and sclerostin in osteocytes: involvement of JNK and ERK1/2 signalling.
    Fontani F; Marcucci G; Iantomasi T; Brandi ML; Vincenzini MT
    Calcif Tissue Int; 2015 Apr; 96(4):335-46. PubMed ID: 25660312
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pro-inflammatory Cytokines: Cellular and Molecular Drug Targets for Glucocorticoid-induced-osteoporosis via Osteocyte.
    Wang T; Yu X; He C
    Curr Drug Targets; 2019; 20(1):1-15. PubMed ID: 29618305
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxidative stress: A common pathological state in a high-risk population for osteoporosis.
    Zhang C; Li H; Li J; Hu J; Yang K; Tao L
    Biomed Pharmacother; 2023 Jul; 163():114834. PubMed ID: 37163779
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reactive Oxygen Species in Osteoclast Differentiation and Possible Pharmaceutical Targets of ROS-Mediated Osteoclast Diseases.
    Agidigbi TS; Kim C
    Int J Mol Sci; 2019 Jul; 20(14):. PubMed ID: 31336616
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of antioxidant properties of major dietary polyphenols and their protective effect on 3T3-L1 preadipocytes and red blood cells exposed to oxidative stress.
    Hatia S; Septembre-Malaterre A; Le Sage F; Badiou-Bénéteau A; Baret P; Payet B; Lefebvre d'hellencourt C; Gonthier MP
    Free Radic Res; 2014 Apr; 48(4):387-401. PubMed ID: 24393006
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The actions of parathyroid hormone on bone: relation to bone remodeling and turnover, calcium homeostasis, and metabolic bone disease. Part I of IV parts: mechanisms of calcium transfer between blood and bone and their cellular basis: morphological and kinetic approaches to bone turnover.
    Parfitt AM
    Metabolism; 1976 Jul; 25(7):809-44. PubMed ID: 781470
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 31.