These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 29264612)

  • 1. Microfluidic bypass manometry: highly parallelized measurement of flow resistance of complex channel geometries and trapped droplets.
    Suteria NS; Nekouei M; Vanapalli SA
    Lab Chip; 2018 Jan; 18(2):343-355. PubMed ID: 29264612
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancing the biocompatibility of microfluidics-assisted fabrication of cell-laden microgels with channel geometry.
    Kim S; Oh J; Cha C
    Colloids Surf B Biointerfaces; 2016 Nov; 147():1-8. PubMed ID: 27478957
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-Throughput Production of Micrometer Sized Double Emulsions and Microgel Capsules in Parallelized 3D Printed Microfluidic Devices.
    Jans A; Lölsberg J; Omidinia-Anarkoli A; Viermann R; Möller M; De Laporte L; Wessling M; Kuehne AJC
    Polymers (Basel); 2019 Nov; 11(11):. PubMed ID: 31731709
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spontaneous transfer of droplets across microfluidic laminar interfaces.
    Deng NN; Wang W; Ju XJ; Xie R; Chu LY
    Lab Chip; 2016 Nov; 16(22):4326-4332. PubMed ID: 27722415
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stability of a jet in confined pressure-driven biphasic flows at low Reynolds number in various geometries.
    Guillot P; Colin A; Ajdari A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jul; 78(1 Pt 2):016307. PubMed ID: 18764050
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Label-free viscosity measurement of complex fluids using reversal flow switching manipulation in a microfluidic channel.
    Jun Kang Y; Ryu J; Lee SJ
    Biomicrofluidics; 2013; 7(4):44106. PubMed ID: 24404040
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigating the fluid dynamics of rapid processes within microfluidic devices using bright-field microscopy.
    Pirbodaghi T; Vigolo D; Akbari S; deMello A
    Lab Chip; 2015 May; 15(9):2140-4. PubMed ID: 25812165
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidic Array Chip with Parallel Channels for Fast Preparation of Sample Droplet Array.
    Kong KS; Choi JH; Kim GM
    J Nanosci Nanotechnol; 2016 Jun; 16(6):6294-8. PubMed ID: 27427705
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D Printing of Inertial Microfluidic Devices.
    Razavi Bazaz S; Rouhi O; Raoufi MA; Ejeian F; Asadnia M; Jin D; Ebrahimi Warkiani M
    Sci Rep; 2020 Apr; 10(1):5929. PubMed ID: 32246111
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Size-Based Sorting of Emulsion Droplets in Microfluidic Channels Patterned with Laser-Ablated Guiding Tracks.
    Rehman AU; Coskun UC; Rashid Z; Morova B; Jonáš A; Erten A; Kiraz A
    Anal Chem; 2020 Feb; 92(3):2597-2604. PubMed ID: 31905281
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidic Investigation of Nanoparticles' Role in Mobilizing Trapped Oil Droplets in Porous Media.
    Xu K; Zhu P; Huh C; Balhoff MT
    Langmuir; 2015 Dec; 31(51):13673-9. PubMed ID: 26671612
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dual-nozzle microfluidic droplet generator.
    Choi JW; Lee JM; Kim TH; Ha JH; Ahrberg CD; Chung BG
    Nano Converg; 2018; 5(1):12. PubMed ID: 29755924
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A microfluidic chip capable of switching W/O droplets to vertical laminar flow for electrochemical detection of droplet contents.
    Lin X; Hu X; Bai Z; He Q; Chen H; Yan Y; Ding Z
    Anal Chim Acta; 2014 May; 828():70-9. PubMed ID: 24845817
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optofluidic bioimaging platform for quantitative phase imaging of lab on a chip devices using digital holographic microscopy.
    Pandiyan VP; John R
    Appl Opt; 2016 Jan; 55(3):A54-9. PubMed ID: 26835958
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Instantaneous simulation of fluids and particles in complex microfluidic devices.
    Wang J; Rodgers VGJ; Brisk P; Grover WH
    PLoS One; 2017; 12(12):e0189429. PubMed ID: 29267312
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Laminar flow mediated continuous single-cell analysis on a novel poly(dimethylsiloxane) microfluidic chip.
    Deng B; Tian Y; Yu X; Song J; Guo F; Xiao Y; Zhang Z
    Anal Chim Acta; 2014 Apr; 820():104-11. PubMed ID: 24745743
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational and functional evaluation of a microfluidic blood flow device.
    Gilbert RJ; Park H; Rasponi M; Redaelli A; Gellman B; Dasse KA; Thorsen T
    ASAIO J; 2007; 53(4):447-55. PubMed ID: 17667229
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of novel geometry-independent method for dialysis access pressure-flow monitoring.
    Weitzel WF; Cotant CL; Wen Z; Biswas R; Patel P; Panduranga H; Gianchandani YB; Rubin JM
    Theor Biol Med Model; 2008 Nov; 5():22. PubMed ID: 18986548
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design of pressure-driven microfluidic networks using electric circuit analogy.
    Oh KW; Lee K; Ahn B; Furlani EP
    Lab Chip; 2012 Feb; 12(3):515-45. PubMed ID: 22179505
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of monodisperse droplet generation in flow-focusing devices with hydrophilic and hydrophobic surfaces.
    Roberts CC; Rao RR; Loewenberg M; Brooks CF; Galambos P; Grillet AM; Nemer MB
    Lab Chip; 2012 Apr; 12(8):1540-7. PubMed ID: 22398953
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.