These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 29264796)

  • 1. "Shaving" Live Bacterial Cells with Proteases for Proteomic Analysis of Surface Proteins.
    Rodríguez-Ortega MJ
    Methods Mol Biol; 2018; 1722():21-29. PubMed ID: 29264796
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cell Shaving and False-Positive Control Strategies Coupled to Novel Statistical Tools to Profile Gram-Positive Bacterial Surface Proteomes.
    Solis N; Cordwell SJ
    Methods Mol Biol; 2016; 1440():47-55. PubMed ID: 27311663
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid Surface Shaving for Proteomic Identification of Novel Surface Antigens for Vaccine Development.
    Luu LDW; Lan R
    Methods Mol Biol; 2022; 2414():47-62. PubMed ID: 34784031
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surfomics: shaving live organisms for a fast proteomic identification of surface proteins.
    Olaya-Abril A; Jiménez-Munguía I; Gómez-Gascón L; Rodríguez-Ortega MJ
    J Proteomics; 2014 Jan; 97():164-76. PubMed ID: 23624344
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Another turn of the screw in shaving Gram-positive bacteria: Optimization of proteomics surface protein identification in Streptococcus pneumoniae.
    Olaya-Abril A; Gómez-Gascón L; Jiménez-Munguía I; Obando I; Rodríguez-Ortega MJ
    J Proteomics; 2012 Jun; 75(12):3733-46. PubMed ID: 22575384
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shedding & shaving: disclosure of proteomic expressions on a bacterial face.
    Tjalsma H; Lambooy L; Hermans PW; Swinkels DW
    Proteomics; 2008 Apr; 8(7):1415-28. PubMed ID: 18306176
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Overcoming function annotation errors in the Gram-positive pathogen Streptococcus suis by a proteomics-driven approach.
    Rodríguez-Ortega MJ; Luque I; Tarradas C; Bárcena JA
    BMC Genomics; 2008 Dec; 9():588. PubMed ID: 19061494
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of five methods for direct extraction of surface proteins from Listeria monocytogenes for proteomic analysis by orbitrap mass spectrometry.
    Tiong HK; Hartson S; Muriana PM
    J Microbiol Methods; 2015 Mar; 110():54-60. PubMed ID: 25578509
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Uncovering surface-exposed antigens of Lactobacillus rhamnosus by cell shaving proteomics and two-dimensional immunoblotting.
    Espino E; Koskenniemi K; Mato-Rodriguez L; Nyman TA; Reunanen J; Koponen J; Öhman T; Siljamäki P; Alatossava T; Varmanen P; Savijoki K
    J Proteome Res; 2015 Feb; 14(2):1010-24. PubMed ID: 25531588
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cysteinyl-tagging of integral membrane proteins for proteomic analysis using liquid chromatography-tandem mass spectrometry.
    Mitra SK; Goshe MB
    Methods Mol Biol; 2009; 528():311-26. PubMed ID: 19153702
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proteomic characterization of integral membrane proteins using thermostatted liquid chromatography coupled with tandem mass spectrometry.
    Moore SM; Wu CC
    Methods Mol Biol; 2012; 914():155-64. PubMed ID: 22976027
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proteomic analysis of plasma membrane vesicles.
    Bauer B; Davidson M; Orwar O
    Angew Chem Int Ed Engl; 2009; 48(9):1656-9. PubMed ID: 19156792
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of Streptococcus pneumoniae secreted antigens by immuno-proteomic approach.
    Choi CW; Lee YG; Kwon SO; Kim HY; Lee JC; Chung YH; Yun CY; Kim SI
    Diagn Microbiol Infect Dis; 2012 Apr; 72(4):318-27. PubMed ID: 22306351
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extraction and Preparation of Listeria monocytogenes Subproteomes for Mass Spectrometry Analysis.
    Santos T; Hébraud M
    Methods Mol Biol; 2021; 2220():137-153. PubMed ID: 32975772
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strain-level typing and identification of bacteria using mass spectrometry-based proteomics.
    Karlsson R; Davidson M; Svensson-Stadler L; Karlsson A; Olesen K; Carlsohn E; Moore ER
    J Proteome Res; 2012 May; 11(5):2710-20. PubMed ID: 22452665
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Six alternative proteases for mass spectrometry-based proteomics beyond trypsin.
    Giansanti P; Tsiatsiani L; Low TY; Heck AJ
    Nat Protoc; 2016 May; 11(5):993-1006. PubMed ID: 27123950
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enrichment of Cell Surface-Associated Proteins in Gram-Positive Bacteria by Biotinylation or Trypsin Shaving for Mass Spectrometry Analysis.
    Bonn F; Maaß S; van Dijl JM
    Methods Mol Biol; 2018; 1841():35-43. PubMed ID: 30259478
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Large-scale identification of membrane proteins based on analysis of trypsin-protected transmembrane segments.
    Vit O; Man P; Kadek A; Hausner J; Sklenar J; Harant K; Novak P; Scigelova M; Woffendin G; Petrak J
    J Proteomics; 2016 Oct; 149():15-22. PubMed ID: 26975722
    [TBL] [Abstract][Full Text] [Related]  

  • 19. N-terminomics: a high-content screen for protease substrates and their cleavage sites.
    Timmer JC; Salvesen GS
    Methods Mol Biol; 2011; 753():243-55. PubMed ID: 21604127
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PROCEED: A proteomic method for analysing plasma membrane proteins in living mammalian cells.
    Bledi Y; Inberg A; Linial M
    Brief Funct Genomic Proteomic; 2003 Oct; 2(3):254-65. PubMed ID: 15239928
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.