These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 29264851)

  • 1. Surface restructuring of red mud to produce FeO
    Pinto PS; Lanza GD; Souza MN; Ardisson JD; Lago RM
    Environ Sci Pollut Res Int; 2018 Mar; 25(7):6762-6771. PubMed ID: 29264851
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of [FeOx(OH)y] surface sites on the adsorption of β-lactamic antibiotics on Al2O3 supported Fe oxide.
    Pinto PS; Medeiros TPV; Ardisson JD; Lago RM
    J Hazard Mater; 2016 Nov; 317():327-334. PubMed ID: 27318729
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Arsenate removal from aqueous solutions using modified red mud.
    Zhang S; Liu C; Luan Z; Peng X; Ren H; Wang J
    J Hazard Mater; 2008 Apr; 152(2):486-92. PubMed ID: 17826896
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Arsenic sorption by red mud-modified biochar produced from rice straw.
    Wu C; Huang L; Xue SG; Huang YY; Hartley W; Cui MQ; Wong MH
    Environ Sci Pollut Res Int; 2017 Aug; 24(22):18168-18178. PubMed ID: 28634793
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison study of phosphorus adsorption on different waste solids: Fly ash, red mud and ferric-alum water treatment residues.
    Wang Y; Yu Y; Li H; Shen C
    J Environ Sci (China); 2016 Dec; 50():79-86. PubMed ID: 28034434
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coordination and redox interactions of β-lactam antibiotics with Cu
    Božić B; Korać J; Stanković DM; Stanić M; Romanović M; Pristov JB; Spasić S; Popović-Bijelić A; Spasojević I; Bajčetić M
    Free Radic Biol Med; 2018 Dec; 129():279-285. PubMed ID: 30267756
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Greek "red mud" residue: a study of microwave reductive roasting followed by magnetic separation for a metallic iron recovery process.
    Samouhos M; Taxiarchou M; Tsakiridis PE; Potiriadis K
    J Hazard Mater; 2013 Jun; 254-255():193-205. PubMed ID: 23611801
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Production of electrolytic iron from red mud in alkaline media.
    Maihatchi Ahamed A; Pons MN; Ricoux Q; Goettmann F; Lapicque F
    J Environ Manage; 2020 Jul; 266():110547. PubMed ID: 32310115
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The removal of amoxicillin from wastewater using organobentonite.
    Zha Sx; Zhou Y; Jin X; Chen Z
    J Environ Manage; 2013 Nov; 129():569-76. PubMed ID: 24029460
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphate removal from wastewater using red mud.
    Huang W; Wang S; Zhu Z; Li L; Yao X; Rudolph V; Haghseresht F
    J Hazard Mater; 2008 Oct; 158(1):35-42. PubMed ID: 18314264
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fenton-like oxidation of Rhodamine B in the presence of two types of iron (II, III) oxide.
    Xue X; Hanna K; Deng N
    J Hazard Mater; 2009 Jul; 166(1):407-14. PubMed ID: 19167810
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sequestration of carbon dioxide (CO2) using red mud.
    Yadav VS; Prasad M; Khan J; Amritphale SS; Singh M; Raju CB
    J Hazard Mater; 2010 Apr; 176(1-3):1044-50. PubMed ID: 20036053
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-step pyrolysis of phosphoric acid-activated chitin for efficient adsorption of cephalexin antibiotic.
    Khanday WA; Ahmed MJ; Okoye PU; Hummadi EH; Hameed BH
    Bioresour Technol; 2019 May; 280():255-259. PubMed ID: 30772638
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Green preparation of a novel red mud@carbon composite and its application for adsorption of 2,4-dichlorophenoxyacetic acid from aqueous solution.
    Kazak O; Eker YR; Akin I; Bingol H; Tor A
    Environ Sci Pollut Res Int; 2017 Oct; 24(29):23057-23068. PubMed ID: 28825175
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Valorization of Poly (ethylene) terephthalate (PET) wastes into magnetic carbon for adsorption of antibiotic from water: Characterization and application.
    Rai P; Singh KP
    J Environ Manage; 2018 Feb; 207():249-261. PubMed ID: 29179114
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hierarchical Zeolite Y Containing Ti and Fe Oxides as Photocatalysts for Degradation of Amoxicillin.
    Petcu G; Anghel EM; Somacescu S; Preda S; Culita DC; Mocanu S; Ciobanu M; Parvulescu V
    J Nanosci Nanotechnol; 2020 Feb; 20(2):1158-1169. PubMed ID: 31383116
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A review of the use of red mud as adsorbent for the removal of toxic pollutants from water and wastewater.
    Bhatnagar A; Vilar VJ; Botelho CM; Boaventura RA
    Environ Technol; 2011; 32(3-4):231-49. PubMed ID: 21780692
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Removal of congo red from aqueous solution by adsorption onto acid activated red mud.
    Tor A; Cengeloglu Y
    J Hazard Mater; 2006 Nov; 138(2):409-15. PubMed ID: 16846690
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A method for preparing ferric activated carbon composites adsorbents to remove arsenic from drinking water.
    Zhang QL; Lin YC; Chen X; Gao NY
    J Hazard Mater; 2007 Sep; 148(3):671-8. PubMed ID: 17434260
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of thermal treatments on the characterisation and utilisation of red mud with sawdust additive.
    Liu Y; Naidu R; Ming H; Dharmarajan R; Du J
    Waste Manag Res; 2016 Jun; 34(6):518-26. PubMed ID: 26951343
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.