These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 29265009)

  • 1. ERAASR: an algorithm for removing electrical stimulation artifacts from multielectrode array recordings.
    O'Shea DJ; Shenoy KV
    J Neural Eng; 2018 Apr; 15(2):026020. PubMed ID: 29265009
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Signal processing methods for reducing artifacts in microelectrode brain recordings caused by functional electrical stimulation.
    Young D; Willett F; Memberg WD; Murphy B; Walter B; Sweet J; Miller J; Hochberg LR; Kirsch RF; Ajiboye AB
    J Neural Eng; 2018 Apr; 15(2):026014. PubMed ID: 29199642
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of electrical microstimulation artifact removal methods for high-channel-count prostheses.
    Wang F; Chen X; Roelfsema PR
    J Neurosci Methods; 2024 Aug; 408():110169. PubMed ID: 38782123
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Signal recovery from stimulation artifacts in intracranial recordings with dictionary learning.
    Caldwell DJ; Cronin JA; Rao RPN; Collins KL; Weaver KE; Ko AL; Ojemann JG; Kutz JN; Brunton BW
    J Neural Eng; 2020 Apr; 17(2):026023. PubMed ID: 32103828
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spike sorting in the presence of stimulation artifacts: a dynamical control systems approach.
    Shokri M; Gogliettino AR; Hottowy P; Sher A; Litke AM; Chichilnisky EJ; Pequito S; Muratore D
    J Neural Eng; 2024 Feb; 21(1):. PubMed ID: 38271715
    [No Abstract]   [Full Text] [Related]  

  • 6. Artifact-free recordings in human bidirectional brain-computer interfaces.
    Weiss JM; Flesher SN; Franklin R; Collinger JL; Gaunt RA
    J Neural Eng; 2019 Feb; 16(1):016002. PubMed ID: 30444217
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An electrocorticographic electrode array for simultaneous recording from medial, lateral, and intrasulcal surface of the cortex in macaque monkeys.
    Fukushima M; Saunders RC; Mullarkey M; Doyle AM; Mishkin M; Fujii N
    J Neurosci Methods; 2014 Aug; 233():155-65. PubMed ID: 24972186
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automated in vivo patch-clamp evaluation of extracellular multielectrode array spike recording capability.
    Allen BD; Moore-Kochlacs C; Bernstein JG; Kinney JP; Scholvin J; Seoane LF; Chronopoulos C; Lamantia C; Kodandaramaiah SB; Tegmark M; Boyden ES
    J Neurophysiol; 2018 Nov; 120(5):2182-2200. PubMed ID: 29995597
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrical stimulus artifact cancellation and neural spike detection on large multi-electrode arrays.
    Mena GE; Grosberg LE; Madugula S; Hottowy P; Litke A; Cunningham J; Chichilnisky EJ; Paninski L
    PLoS Comput Biol; 2017 Nov; 13(11):e1005842. PubMed ID: 29131818
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Encoding of Both Reaching and Grasping Kinematics in Dorsal and Ventral Premotor Cortices.
    Takahashi K; Best MD; Huh N; Brown KA; Tobaa AA; Hatsopoulos NG
    J Neurosci; 2017 Feb; 37(7):1733-1746. PubMed ID: 28077725
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Properties and application of a multichannel integrated circuit for low-artifact, patterned electrical stimulation of neural tissue.
    Hottowy P; Skoczeń A; Gunning DE; Kachiguine S; Mathieson K; Sher A; Wiącek P; Litke AM; Dąbrowski W
    J Neural Eng; 2012 Dec; 9(6):066005. PubMed ID: 23160018
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Decoding 3D reach and grasp from hybrid signals in motor and premotor cortices: spikes, multiunit activity, and local field potentials.
    Bansal AK; Truccolo W; Vargas-Irwin CE; Donoghue JP
    J Neurophysiol; 2012 Mar; 107(5):1337-55. PubMed ID: 22157115
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recording human electrocorticographic (ECoG) signals for neuroscientific research and real-time functional cortical mapping.
    Hill NJ; Gupta D; Brunner P; Gunduz A; Adamo MA; Ritaccio A; Schalk G
    J Vis Exp; 2012 Jun; (64):. PubMed ID: 22782131
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reliability of signals from a chronically implanted, silicon-based electrode array in non-human primate primary motor cortex.
    Suner S; Fellows MR; Vargas-Irwin C; Nakata GK; Donoghue JP
    IEEE Trans Neural Syst Rehabil Eng; 2005 Dec; 13(4):524-41. PubMed ID: 16425835
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Consistent linear and non-linear responses to invasive electrical brain stimulation across individuals and primate species with implanted electrodes.
    Basu I; Robertson MM; Crocker B; Peled N; Farnes K; Vallejo-Lopez DI; Deng H; Thombs M; Martinez-Rubio C; Cheng JJ; McDonald E; Dougherty DD; Eskandar EN; Widge AS; Paulk AC; Cash SS
    Brain Stimul; 2019; 12(4):877-892. PubMed ID: 30904423
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A low-cost multielectrode system for data acquisition enabling real-time closed-loop processing with rapid recovery from stimulation artifacts.
    Rolston JD; Gross RE; Potter SM
    Front Neuroeng; 2009; 2():12. PubMed ID: 19668698
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultra-long term stability of single units using chronically implanted multielectrode arrays.
    Vaidya M; Dickey A; Best MD; Coles J; Balasubramanian K; Suminski AJ; Hatsopoulos NG
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():4872-5. PubMed ID: 25571083
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Implantable computer-controlled adaptive multielectrode positioning system.
    Ferrea E; Suriya-Arunroj L; Hoehl D; Thomas U; Gail A
    J Neurophysiol; 2018 Apr; 119(4):1471-1484. PubMed ID: 29187552
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chronic multisite brain recordings from a totally implantable bidirectional neural interface: experience in 5 patients with Parkinson's disease.
    Swann NC; de Hemptinne C; Miocinovic S; Qasim S; Ostrem JL; Galifianakis NB; Luciano MS; Wang SS; Ziman N; Taylor R; Starr PA
    J Neurosurg; 2018 Feb; 128(2):605-616. PubMed ID: 28409730
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterizing the short-latency evoked response to intracortical microstimulation across a multi-electrode array.
    Sombeck JT; Heye J; Kumaravelu K; Goetz SM; Peterchev AV; Grill WM; Bensmaia S; Miller LE
    J Neural Eng; 2022 Apr; 19(2):. PubMed ID: 35378515
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 11.