These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 29265136)

  • 1. Molecular dynamics simulations of melting and sintering of Si nanoparticles: a comparison of different force fields and computational models.
    Sementa L; Barcaro G; Monti S; Carravetta V
    Phys Chem Chem Phys; 2018 Jan; 20(3):1707-1715. PubMed ID: 29265136
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two-phase simulation of the crystalline silicon melting line at pressures from -1 to 3 GPa.
    Dozhdikov VS; Basharin AY; Levashov PR
    J Chem Phys; 2012 Aug; 137(5):054502. PubMed ID: 22894359
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Parametrization of a Reactive Force Field (ReaxFF) for Molecular Dynamics Simulations of Si Nanoparticles.
    Barcaro G; Monti S; Sementa L; Carravetta V
    J Chem Theory Comput; 2017 Aug; 13(8):3854-3861. PubMed ID: 28640604
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Parametrization of Stillinger-Weber potential based on valence force field model: application to single-layer MoS2 and black phosphorus.
    Jiang JW
    Nanotechnology; 2015 Aug; 26(31):315706. PubMed ID: 26184637
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular Dynamics Study of Cubic Boron Nitride Nanoparticles: Decomposition with Phase Segregation during Melting.
    Lee HF; Esfarjani K; Dong Z; Xiong G; Pelegri AA; Tse SD
    ACS Nano; 2016 Nov; 10(11):10563-10572. PubMed ID: 27797465
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular dynamics simulation of titanium dioxide nanoparticle sintering.
    Koparde VN; Cummings PT
    J Phys Chem B; 2005 Dec; 109(51):24280-7. PubMed ID: 16375425
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of molecular dynamics methods and interatomic potentials for calculating the thermal conductivity of silicon.
    Howell PC
    J Chem Phys; 2012 Dec; 137(22):224111. PubMed ID: 23248991
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular Dynamics Simulations of Melting Iron Nanoparticles with/without Defects Using a Reaxff Reactive Force Field.
    Sun J; Liu P; Wang M; Liu J
    Sci Rep; 2020 Feb; 10(1):3408. PubMed ID: 32099061
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Melting of Ni and Fe nanoparticles: a molecular dynamics study with application to carbon nanotube synthesis.
    Joshi NP; Spearot DE; Bhat D
    J Nanosci Nanotechnol; 2010 Sep; 10(9):5587-93. PubMed ID: 21133078
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reactive Molecular Dynamics Simulation of Fullerene Combustion Synthesis: ReaxFF vs DFTB Potentials.
    Qian HJ; van Duin AC; Morokuma K; Irle S
    J Chem Theory Comput; 2011 Jul; 7(7):2040-8. PubMed ID: 26606475
    [TBL] [Abstract][Full Text] [Related]  

  • 11. When mechanisms of coalescence and sintering at the nanoscale fundamentally differ: Molecular dynamics study.
    Samsonov VM; Talyzin IV; Puytov VV; Vasilyev SA; Romanov AA; Alymov MI
    J Chem Phys; 2022 Jun; 156(21):214302. PubMed ID: 35676151
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phase transformations during sintering of titania nanoparticles.
    Koparde VN; Cummings PT
    ACS Nano; 2008 Aug; 2(8):1620-4. PubMed ID: 19206364
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular dynamics simulations of the melting of aluminum nanoparticles.
    Alavi S; Thompson DL
    J Phys Chem A; 2006 Feb; 110(4):1518-23. PubMed ID: 16435812
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reactive molecular dynamics simulation on the disintegration of Kapton, POSS polyimide, amorphous silica, and teflon during atomic oxygen impact using the ReaxFF reactive force-field method.
    Rahnamoun A; van Duin AC
    J Phys Chem A; 2014 Apr; 118(15):2780-7. PubMed ID: 24679339
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A molecular-dynamics study of structural and physical properties of nitromethane nanoparticles.
    Alavi S; Thompson DL
    J Chem Phys; 2004 Jun; 120(21):10231-9. PubMed ID: 15268047
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An investigation into the melting of silicon nanoclusters using molecular dynamics simulations.
    Fang KC; Weng CI
    Nanotechnology; 2005 Feb; 16(2):250-6. PubMed ID: 21727431
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of Water on Tribochemical Wear of Silicon Oxide Interface: Molecular Dynamics (MD) Study with Reactive Force Field (ReaxFF).
    Yeon J; van Duin AC; Kim SH
    Langmuir; 2016 Feb; 32(4):1018-26. PubMed ID: 26756178
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accuracy of existing atomic potentials for the CdTe semiconductor compound.
    Ward DK; Zhou XW; Wong BM; Doty FP; Zimmerman JA
    J Chem Phys; 2011 Jun; 134(24):244703. PubMed ID: 21721653
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptive accelerated ReaxFF reactive dynamics with validation from simulating hydrogen combustion.
    Cheng T; Jaramillo-Botero A; Goddard WA; Sun H
    J Am Chem Soc; 2014 Jul; 136(26):9434-42. PubMed ID: 24885152
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of the ReaxFF Reactive Force Field for Inherent Point Defects in the Si/Silica System.
    Nayir N; van Duin ACT; Erkoc S
    J Phys Chem A; 2019 May; 123(19):4303-4313. PubMed ID: 31017438
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.