These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 29265364)

  • 1. NADPH-dependent 5-keto-D-gluconate reductase is a part of the fungal pathway for D-glucuronate catabolism.
    Kuivanen J; Richard P
    FEBS Lett; 2018 Jan; 592(1):71-77. PubMed ID: 29265364
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel pathway for fungal D-glucuronate catabolism contains an L-idonate forming 2-keto-L-gulonate reductase.
    Kuivanen J; Sugai-Guérios MH; Arvas M; Richard P
    Sci Rep; 2016 May; 6():26329. PubMed ID: 27189775
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Clustered Genes Encoding 2-Keto-l-Gulonate Reductase and l-Idonate 5-Dehydrogenase in the Novel Fungal d-Glucuronic Acid Pathway.
    Kuivanen J; Arvas M; Richard P
    Front Microbiol; 2017; 8():225. PubMed ID: 28261181
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The 'true' L-xylulose reductase of filamentous fungi identified in Aspergillus niger.
    Mojzita D; Vuoristo K; Koivistoinen OM; Penttilä M; Richard P
    FEBS Lett; 2010 Aug; 584(16):3540-4. PubMed ID: 20654618
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The pathway intermediate 2-keto-3-deoxy-L-galactonate mediates the induction of genes involved in D-galacturonic acid utilization in Aspergillus niger.
    Alazi E; Khosravi C; Homan TG; du Pré S; Arentshorst M; Di Falco M; Pham TTM; Peng M; Aguilar-Pontes MV; Visser J; Tsang A; de Vries RP; Ram AFJ
    FEBS Lett; 2017 May; 591(10):1408-1418. PubMed ID: 28417461
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sorbitol dehydrogenase of Aspergillus niger, SdhA, is part of the oxido-reductive D-galactose pathway and essential for D-sorbitol catabolism.
    Koivistoinen OM; Richard P; Penttilä M; Ruohonen L; Mojzita D
    FEBS Lett; 2012 Feb; 586(4):378-83. PubMed ID: 22245674
    [TBL] [Abstract][Full Text] [Related]  

  • 7. L-xylo-3-hexulose reductase is the missing link in the oxidoreductive pathway for D-galactose catabolism in filamentous fungi.
    Mojzita D; Herold S; Metz B; Seiboth B; Richard P
    J Biol Chem; 2012 Jul; 287(31):26010-8. PubMed ID: 22654107
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GalX regulates the D-galactose oxido-reductive pathway in Aspergillus niger.
    Gruben BS; Zhou M; de Vries RP
    FEBS Lett; 2012 Nov; 586(22):3980-5. PubMed ID: 23063944
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The transcriptional activators AraR and XlnR from Aspergillus niger regulate expression of pentose catabolic and pentose phosphate pathway genes.
    Battaglia E; Zhou M; de Vries RP
    Res Microbiol; 2014 Sep; 165(7):531-40. PubMed ID: 25086261
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigating the physiological roles of low-efficiency D-mannonate and D-gluconate dehydratases in the enolase superfamily: pathways for the catabolism of L-gulonate and L-idonate.
    Wichelecki DJ; Vendiola JA; Jones AM; Al-Obaidi N; Almo SC; Gerlt JA
    Biochemistry; 2014 Sep; 53(35):5692-9. PubMed ID: 25145794
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vivo functional analysis of L-rhamnose metabolic pathway in Aspergillus niger: a tool to identify the potential inducer of RhaR.
    Khosravi C; Kun RS; Visser J; Aguilar-Pontes MV; de Vries RP; Battaglia E
    BMC Microbiol; 2017 Nov; 17(1):214. PubMed ID: 29110642
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering cofactor metabolism for improved protein and glucoamylase production in Aspergillus niger.
    Sui YF; Schütze T; Ouyang LM; Lu H; Liu P; Xiao X; Qi J; Zhuang YP; Meyer V
    Microb Cell Fact; 2020 Oct; 19(1):198. PubMed ID: 33097040
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Bacillus subtilis yqjI gene encodes the NADP+-dependent 6-P-gluconate dehydrogenase in the pentose phosphate pathway.
    Zamboni N; Fischer E; Laudert D; Aymerich S; Hohmann HP; Sauer U
    J Bacteriol; 2004 Jul; 186(14):4528-34. PubMed ID: 15231785
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vitamin C. Biosynthesis, recycling and degradation in mammals.
    Linster CL; Van Schaftingen E
    FEBS J; 2007 Jan; 274(1):1-22. PubMed ID: 17222174
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetic studies on NADPH-linked aldehyde reductase from human liver.
    Wermuth B; von Wartburg JP
    Adv Exp Med Biol; 1980; 132():189-95. PubMed ID: 7424706
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of d-xylose reductase, XyrB, from
    Terebieniec A; Chroumpi T; Dilokpimol A; Aguilar-Pontes MV; Mäkelä MR; de Vries RP
    Biotechnol Rep (Amst); 2021 Jun; 30():e00610. PubMed ID: 33842213
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of the galactitol dehydrogenase, LadB, that is part of the oxido-reductive D-galactose catabolic pathway in Aspergillus niger.
    Mojzita D; Koivistoinen OM; Maaheimo H; Penttilä M; Ruohonen L; Richard P
    Fungal Genet Biol; 2012 Feb; 49(2):152-9. PubMed ID: 22155165
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pathways for metabolism of ketoaldonic acids in an Erwinia sp.
    Truesdell SJ; Sims JC; Boerman PA; Seymour JL; Lazarus RA
    J Bacteriol; 1991 Nov; 173(21):6651-6. PubMed ID: 1938871
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic engineering of the fungal D-galacturonate pathway for L-ascorbic acid production.
    Kuivanen J; Penttilä M; Richard P
    Microb Cell Fact; 2015 Jan; 14():2. PubMed ID: 25566698
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integration of in vivo and in silico metabolic fluxes for improvement of recombinant protein production.
    Driouch H; Melzer G; Wittmann C
    Metab Eng; 2012 Jan; 14(1):47-58. PubMed ID: 22115737
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.