These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
345 related articles for article (PubMed ID: 29265526)
1. Largely unlinked gene sets targeted by selection for domestication syndrome phenotypes in maize and sorghum. Lai X; Yan L; Lu Y; Schnable JC Plant J; 2018 Mar; 93(5):843-855. PubMed ID: 29265526 [TBL] [Abstract][Full Text] [Related]
2. Genomic screening for artificial selection during domestication and improvement in maize. Yamasaki M; Wright SI; McMullen MD Ann Bot; 2007 Nov; 100(5):967-73. PubMed ID: 17704539 [TBL] [Abstract][Full Text] [Related]
3. Genetic Architecture of domestication- and improvement-related traits using a population derived from Sorghum virgatum and Sorghum bicolor. Liu H; Liu H; Zhou L; Lin Z Plant Sci; 2019 Jun; 283():135-146. PubMed ID: 31128683 [TBL] [Abstract][Full Text] [Related]
4. Genetic Architecture of Domestication-Related Traits in Maize. Xue S; Bradbury PJ; Casstevens T; Holland JB Genetics; 2016 Sep; 204(1):99-113. PubMed ID: 27412713 [TBL] [Abstract][Full Text] [Related]
5. Evidence of selection at the ramosa1 locus during maize domestication. Sigmon B; Vollbrecht E Mol Ecol; 2010 Apr; 19(7):1296-311. PubMed ID: 20196812 [TBL] [Abstract][Full Text] [Related]
6. Patterns of selection and tissue-specific expression among maize domestication and crop improvement loci. Hufford KM; Canaran P; Ware DH; McMullen MD; Gaut BS Plant Physiol; 2007 Jul; 144(3):1642-53. PubMed ID: 17496114 [TBL] [Abstract][Full Text] [Related]
7. Using association mapping in teosinte to investigate the function of maize selection-candidate genes. Weber AL; Zhao Q; McMullen MD; Doebley JF PLoS One; 2009 Dec; 4(12):e8227. PubMed ID: 20011044 [TBL] [Abstract][Full Text] [Related]
8. The effects of artificial selection on the maize genome. Wright SI; Bi IV; Schroeder SG; Yamasaki M; Doebley JF; McMullen MD; Gaut BS Science; 2005 May; 308(5726):1310-4. PubMed ID: 15919994 [TBL] [Abstract][Full Text] [Related]
9. Recent demography drives changes in linked selection across the maize genome. Beissinger TM; Wang L; Crosby K; Durvasula A; Hufford MB; Ross-Ibarra J Nat Plants; 2016 Jun; 2():16084. PubMed ID: 27294617 [TBL] [Abstract][Full Text] [Related]
10. Genome Sequence of a 5,310-Year-Old Maize Cob Provides Insights into the Early Stages of Maize Domestication. Ramos-Madrigal J; Smith BD; Moreno-Mayar JV; Gopalakrishnan S; Ross-Ibarra J; Gilbert MTP; Wales N Curr Biol; 2016 Dec; 26(23):3195-3201. PubMed ID: 27866890 [TBL] [Abstract][Full Text] [Related]
11. Genetic, evolutionary and plant breeding insights from the domestication of maize. Hake S; Ross-Ibarra J Elife; 2015 Mar; 4():. PubMed ID: 25807085 [TBL] [Abstract][Full Text] [Related]
12. Inheritance of inflorescence architecture in sorghum. Brown PJ; Klein PE; Bortiri E; Acharya CB; Rooney WL; Kresovich S Theor Appl Genet; 2006 Sep; 113(5):931-42. PubMed ID: 16847662 [TBL] [Abstract][Full Text] [Related]
13. Comparative population genetics of the panicoid grasses: sequence polymorphism, linkage disequilibrium and selection in a diverse sample of sorghum bicolor. Hamblin MT; Mitchell SE; White GM; Gallego J; Kukatla R; Wing RA; Paterson AH; Kresovich S Genetics; 2004 May; 167(1):471-83. PubMed ID: 15166170 [TBL] [Abstract][Full Text] [Related]
14. Genetics and consequences of crop domestication. Flint-Garcia SA J Agric Food Chem; 2013 Sep; 61(35):8267-76. PubMed ID: 23718780 [TBL] [Abstract][Full Text] [Related]
15. The genetic architecture of teosinte catalyzed and constrained maize domestication. Yang CJ; Samayoa LF; Bradbury PJ; Olukolu BA; Xue W; York AM; Tuholski MR; Wang W; Daskalska LL; Neumeyer MA; Sanchez-Gonzalez JJ; Romay MC; Glaubitz JC; Sun Q; Buckler ES; Holland JB; Doebley JF Proc Natl Acad Sci U S A; 2019 Mar; 116(12):5643-5652. PubMed ID: 30842282 [TBL] [Abstract][Full Text] [Related]