These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 29265720)

  • 21. Cobalt-phosphate-assisted photoelectrochemical water oxidation by arrays of molybdenum-doped zinc oxide nanorods.
    Lin YG; Hsu YK; Chen YC; Lee BW; Hwang JS; Chen LC; Chen KH
    ChemSusChem; 2014 Sep; 7(9):2748-54. PubMed ID: 25044962
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A hole inversion layer at the BiVO4/Bi4V2O11 interface produces a high tunable photovoltage for water splitting.
    Dos Santos WS; Rodriguez M; Afonso AS; Mesquita JP; Nascimento LL; Patrocínio AO; Silva AC; Oliveira LC; Fabris JD; Pereira MC
    Sci Rep; 2016 Aug; 6():31406. PubMed ID: 27503274
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An Optically Transparent Iron Nickel Oxide Catalyst for Solar Water Splitting.
    Morales-Guio CG; Mayer MT; Yella A; Tilley SD; Grätzel M; Hu X
    J Am Chem Soc; 2015 Aug; 137(31):9927-36. PubMed ID: 26200221
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Advancing the Chemistry of CuWO4 for Photoelectrochemical Water Oxidation.
    Lhermitte CR; Bartlett BM
    Acc Chem Res; 2016 Jun; 49(6):1121-9. PubMed ID: 27227377
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Highly Active GaN-Stabilized Ta
    Zhong M; Hisatomi T; Sasaki Y; Suzuki S; Teshima K; Nakabayashi M; Shibata N; Nishiyama H; Katayama M; Yamada T; Domen K
    Angew Chem Int Ed Engl; 2017 Apr; 56(17):4739-4743. PubMed ID: 28323376
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ultrathin FeOOH Nanolayers with Abundant Oxygen Vacancies on BiVO
    Zhang B; Wang L; Zhang Y; Ding Y; Bi Y
    Angew Chem Int Ed Engl; 2018 Feb; 57(8):2248-2252. PubMed ID: 29333765
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Iron based photoanodes for solar fuel production.
    Bassi PS; Gurudayal ; Wong LH; Barber J
    Phys Chem Chem Phys; 2014 Jun; 16(24):11834-42. PubMed ID: 24469680
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Solar water splitting: progress using hematite (α-Fe(2) O(3) ) photoelectrodes.
    Sivula K; Le Formal F; Grätzel M
    ChemSusChem; 2011 Apr; 4(4):432-49. PubMed ID: 21416621
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Visible light water splitting using dye-sensitized oxide semiconductors.
    Youngblood WJ; Lee SH; Maeda K; Mallouk TE
    Acc Chem Res; 2009 Dec; 42(12):1966-73. PubMed ID: 19905000
    [TBL] [Abstract][Full Text] [Related]  

  • 30. p-Type Transparent Conducting Oxide/n-Type Semiconductor Heterojunctions for Efficient and Stable Solar Water Oxidation.
    Chen L; Yang J; Klaus S; Lee LJ; Woods-Robinson R; Ma J; Lum Y; Cooper JK; Toma FM; Wang LW; Sharp ID; Bell AT; Ager JW
    J Am Chem Soc; 2015 Aug; 137(30):9595-603. PubMed ID: 26161845
    [TBL] [Abstract][Full Text] [Related]  

  • 31. CuO-Functionalized Silicon Photoanodes for Photoelectrochemical Water Splitting Devices.
    Shi Y; Gimbert-Suriñach C; Han T; Berardi S; Lanza M; Llobet A
    ACS Appl Mater Interfaces; 2016 Jan; 8(1):696-702. PubMed ID: 26651152
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bismuth Vanadate Photoelectrodes with High Photovoltage as Photoanode and Photocathode in Photoelectrochemical Cells for Water Splitting.
    Dos Santos WS; Rodriguez M; Khoury JMO; Nascimento LA; Ribeiro RJP; Mesquita JP; Silva AC; Nogueira FGE; Pereira MC
    ChemSusChem; 2018 Feb; 11(3):589-597. PubMed ID: 29193761
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Recent Advances in Earth-Abundant Photocathodes for Photoelectrochemical Water Splitting.
    Yang W; Moon J
    ChemSusChem; 2019 May; 12(9):1889-1899. PubMed ID: 30102017
    [TBL] [Abstract][Full Text] [Related]  

  • 34. CuWO4 Nanoflake Array-Based Single-Junction and Heterojunction Photoanodes for Photoelectrochemical Water Oxidation.
    Ye W; Chen F; Zhao F; Han N; Li Y
    ACS Appl Mater Interfaces; 2016 Apr; 8(14):9211-7. PubMed ID: 27011376
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Current progress in developing metal oxide nanoarrays-based photoanodes for photoelectrochemical water splitting.
    Qiu Y; Pan Z; Chen H; Ye D; Guo L; Fan Z; Yang S
    Sci Bull (Beijing); 2019 Sep; 64(18):1348-1380. PubMed ID: 36659664
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Water splitting on semiconductor catalysts under visible-light irradiation.
    Navarro Yerga RM; Alvarez Galván MC; del Valle F; Villoria de la Mano JA; Fierro JL
    ChemSusChem; 2009; 2(6):471-85. PubMed ID: 19536754
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Recent advances in visible-light-responsive photocatalysts for hydrogen production and solar energy conversion--from semiconducting TiO2 to MOF/PCP photocatalysts.
    Horiuchi Y; Toyao T; Takeuchi M; Matsuoka M; Anpo M
    Phys Chem Chem Phys; 2013 Aug; 15(32):13243-53. PubMed ID: 23760469
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modeling practical performance limits of photoelectrochemical water splitting based on the current state of materials research.
    Seitz LC; Chen Z; Forman AJ; Pinaud BA; Benck JD; Jaramillo TF
    ChemSusChem; 2014 May; 7(5):1372-85. PubMed ID: 24692256
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Balancing Catalytic Activity and Interface Energetics of Electrocatalyst-Coated Photoanodes for Photoelectrochemical Water Splitting.
    Xu Z; Wang H; Wen Y; Li W; Sun C; He Y; Shi Z; Pei L; Chen Y; Yan S; Zou Z
    ACS Appl Mater Interfaces; 2018 Jan; 10(4):3624-3633. PubMed ID: 29308871
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Progress on ternary oxide-based photoanodes for use in photoelectrochemical cells for solar water splitting.
    Lee DK; Lee D; Lumley MA; Choi KS
    Chem Soc Rev; 2019 Apr; 48(7):2126-2157. PubMed ID: 30499570
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.