These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 29265726)

  • 41. Site-directed mutagenesis of the active site glutamate in human matrilysin: investigation of its role in catalysis.
    Cha J; Auld DS
    Biochemistry; 1997 Dec; 36(50):16019-24. PubMed ID: 9398337
    [TBL] [Abstract][Full Text] [Related]  

  • 42. X-ray structure and designed evolution of an artificial transfer hydrogenase.
    Creus M; Pordea A; Rossel T; Sardo A; Letondor C; Ivanova A; Letrong I; Stenkamp RE; Ward TR
    Angew Chem Int Ed Engl; 2008; 47(8):1400-4. PubMed ID: 18176932
    [No Abstract]   [Full Text] [Related]  

  • 43. Site-directed mutagenesis under the direction of in silico protein docking modeling reveals the active site residues of 3-ketosteroid-Δ
    Qin N; Shen Y; Yang X; Su L; Tang R; Li W; Wang M
    World J Microbiol Biotechnol; 2017 Jul; 33(7):146. PubMed ID: 28634712
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Genetic Engineering of an Artificial Metalloenzyme for Transfer Hydrogenation of a Self-Immolative Substrate in Escherichia coli's Periplasm.
    Zhao J; Rebelein JG; Mallin H; Trindler C; Pellizzoni MM; Ward TR
    J Am Chem Soc; 2018 Oct; 140(41):13171-13175. PubMed ID: 30272972
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Artificial Metalloenzymes: Reaction Scope and Optimization Strategies.
    Schwizer F; Okamoto Y; Heinisch T; Gu Y; Pellizzoni MM; Lebrun V; Reuter R; Köhler V; Lewis JC; Ward TR
    Chem Rev; 2018 Jan; 118(1):142-231. PubMed ID: 28714313
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Pichia stipitis OYE 2.6 variants with improved catalytic efficiencies from site-saturation mutagenesis libraries.
    Patterson-Orazem A; Sullivan B; Stewart JD
    Bioorg Med Chem; 2014 Oct; 22(20):5628-32. PubMed ID: 25087048
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Systematic Evaluation of Imine-Reducing Enzymes: Common Principles in Imine Reductases, β-Hydroxy Acid Dehydrogenases, and Short-Chain Dehydrogenases/ Reductases.
    Stockinger P; Roth S; Müller M; Pleiss J
    Chembiochem; 2020 Sep; 21(18):2689-2695. PubMed ID: 32311225
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Thermal stabilization of penicillolysin, a thermolabile 19 kDa Zn2+-protease, obtained by site-directed mutagenesis.
    Doi Y; Akiyama H; Yamada Y; Ee CE; Lee BR; Ikeguchi M; Ichishima E
    Protein Eng Des Sel; 2004 Mar; 17(3):261-6. PubMed ID: 15115852
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Artificial transfer hydrogenases for the enantioselective reduction of cyclic imines.
    Dürrenberger M; Heinisch T; Wilson YM; Rossel T; Nogueira E; Knörr L; Mutschler A; Kersten K; Zimbron MJ; Pierron J; Schirmer T; Ward TR
    Angew Chem Int Ed Engl; 2011 Mar; 50(13):3026-9. PubMed ID: 21404391
    [No Abstract]   [Full Text] [Related]  

  • 50. Structure, Activity and Stereoselectivity of NADPH-Dependent Oxidoreductases Catalysing the S-Selective Reduction of the Imine Substrate 2-Methylpyrroline.
    Man H; Wells E; Hussain S; Leipold F; Hart S; Turkenburg JP; Turner NJ; Grogan G
    Chembiochem; 2015 May; 16(7):1052-9. PubMed ID: 25809902
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The "gate keeper" role of Trp222 determines the enantiopreference of diketoreductase toward 2-chloro-1-phenylethanone.
    Ma H; Yang X; Lu Z; Liu N; Chen Y
    PLoS One; 2014; 9(7):e103792. PubMed ID: 25072248
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Synthetic cascades are enabled by combining biocatalysts with artificial metalloenzymes.
    Köhler V; Wilson YM; Dürrenberger M; Ghislieri D; Churakova E; Quinto T; Knörr L; Häussinger D; Hollmann F; Turner NJ; Ward TR
    Nat Chem; 2013 Feb; 5(2):93-9. PubMed ID: 23344429
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Structural insights into the cofactor-assisted substrate recognition of yeast methylglyoxal/isovaleraldehyde reductase Gre2.
    Guo PC; Bao ZZ; Ma XX; Xia Q; Li WF
    Biochim Biophys Acta; 2014 Sep; 1844(9):1486-92. PubMed ID: 24879127
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Thermodynamic characterization of the DmsD binding site for the DmsA twin-arginine motif.
    Winstone TM; Turner RJ
    Biochemistry; 2015 Mar; 54(11):2040-51. PubMed ID: 25659414
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Mechanism-Based Trapping of the Quinonoid Intermediate by Using the K276R Mutant of PLP-Dependent 3-Aminobenzoate Synthase PctV in the Biosynthesis of Pactamycin.
    Hirayama A; Miyanaga A; Kudo F; Eguchi T
    Chembiochem; 2015 Nov; 16(17):2484-90. PubMed ID: 26426567
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Proton transfer in the oxidative half-reaction of pentaerythritol tetranitrate reductase. Structure of the reduced enzyme-progesterone complex and the roles of residues Tyr186, His181, His184.
    Khan H; Barna T; Bruce NC; Munro AW; Leys D; Scrutton NS
    FEBS J; 2005 Sep; 272(18):4660-71. PubMed ID: 16156787
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Asymmetric synthesis of chiral cyclic amine from cyclic imine by bacterial whole-cell catalyst of enantioselective imine reductase.
    Mitsukura K; Suzuki M; Tada K; Yoshida T; Nagasawa T
    Org Biomol Chem; 2010 Oct; 8(20):4533-5. PubMed ID: 20820664
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A NADPH-dependent (S)-imine reductase (SIR) from Streptomyces sp. GF3546 for asymmetric synthesis of optically active amines: purification, characterization, gene cloning, and expression.
    Mitsukura K; Kuramoto T; Yoshida T; Kimoto N; Yamamoto H; Nagasawa T
    Appl Microbiol Biotechnol; 2013 Sep; 97(18):8079-86. PubMed ID: 23263364
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Reactivity of the human thioltransferase (glutaredoxin) C7S, C25S, C78S, C82S mutant and NMR solution structure of its glutathionyl mixed disulfide intermediate reflect catalytic specificity.
    Yang Y; Jao Sc; Nanduri S; Starke DW; Mieyal JJ; Qin J
    Biochemistry; 1998 Dec; 37(49):17145-56. PubMed ID: 9860827
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A site-saturated mutagenesis study of pentaerythritol tetranitrate reductase reveals that residues 181 and 184 influence ligand binding, stereochemistry and reactivity.
    Toogood HS; Fryszkowska A; Hulley M; Sakuma M; Mansell D; Stephens GM; Gardiner JM; Scrutton NS
    Chembiochem; 2011 Mar; 12(5):738-49. PubMed ID: 21374779
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.