These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 29265728)

  • 41. Acute exercise remodels mitochondrial membrane interactions in mouse skeletal muscle.
    Picard M; Gentil BJ; McManus MJ; White K; St Louis K; Gartside SE; Wallace DC; Turnbull DM
    J Appl Physiol (1985); 2013 Nov; 115(10):1562-71. PubMed ID: 23970537
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Mitochondrial dysfunction and apoptosis in myopathic mice with collagen VI deficiency.
    Irwin WA; Bergamin N; Sabatelli P; Reggiani C; Megighian A; Merlini L; Braghetta P; Columbaro M; Volpin D; Bressan GM; Bernardi P; Bonaldo P
    Nat Genet; 2003 Dec; 35(4):367-71. PubMed ID: 14625552
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Intranuclear rod myopathy: molecular pathogenesis and mechanisms of weakness.
    Domazetovska A; Ilkovski B; Kumar V; Valova VA; Vandebrouck A; Hutchinson DO; Robinson PJ; Cooper ST; Sparrow JC; Peckham M; North KN
    Ann Neurol; 2007 Dec; 62(6):597-608. PubMed ID: 17705262
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Evaluation of ubiquinone concentration and mitochondrial function relative to cerivastatin-induced skeletal myopathy in rats.
    Schaefer WH; Lawrence JW; Loughlin AF; Stoffregen DA; Mixson LA; Dean DC; Raab CE; Yu NX; Lankas GR; Frederick CB
    Toxicol Appl Pharmacol; 2004 Jan; 194(1):10-23. PubMed ID: 14728975
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Mitochondrial dysfunction results from oxidative stress in the skeletal muscle of diet-induced insulin-resistant mice.
    Bonnard C; Durand A; Peyrol S; Chanseaume E; Chauvin MA; Morio B; Vidal H; Rieusset J
    J Clin Invest; 2008 Feb; 118(2):789-800. PubMed ID: 18188455
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Differential impact of mitochondrial positioning on mitochondrial Ca(2+) uptake and Ca(2+) spark suppression in skeletal muscle.
    Rossi AE; Boncompagni S; Wei L; Protasi F; Dirksen RT
    Am J Physiol Cell Physiol; 2011 Nov; 301(5):C1128-39. PubMed ID: 21849670
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Mitochondrial fission mediates ceramide-induced metabolic disruption in skeletal muscle.
    Smith ME; Tippetts TS; Brassfield ES; Tucker BJ; Ockey A; Swensen AC; Anthonymuthu TS; Washburn TD; Kane DA; Prince JT; Bikman BT
    Biochem J; 2013 Dec; 456(3):427-39. PubMed ID: 24073738
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Peroxiredoxin 3 has a crucial role in the contractile function of skeletal muscle by regulating mitochondrial homeostasis.
    Lee KP; Shin YJ; Cho SC; Lee SM; Bahn YJ; Kim JY; Kwon ES; Jeong DY; Park SC; Rhee SG; Woo HA; Kwon KS
    Free Radic Biol Med; 2014 Dec; 77():298-306. PubMed ID: 25224038
    [TBL] [Abstract][Full Text] [Related]  

  • 49. IP
    Valladares D; Utreras-Mendoza Y; Campos C; Morales C; Diaz-Vegas A; Contreras-Ferrat A; Westermeier F; Jaimovich E; Marchi S; Pinton P; Lavandero S
    Biochim Biophys Acta Mol Basis Dis; 2018 Nov; 1864(11):3685-3695. PubMed ID: 30251688
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Cytoskeletal tropomyosin Tm5NM1 is required for normal excitation-contraction coupling in skeletal muscle.
    Vlahovich N; Kee AJ; Van der Poel C; Kettle E; Hernandez-Deviez D; Lucas C; Lynch GS; Parton RG; Gunning PW; Hardeman EC
    Mol Biol Cell; 2009 Jan; 20(1):400-9. PubMed ID: 19005216
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Integrated analysis of the involvement of nitric oxide synthesis in mitochondrial proliferation, mitochondrial deficiency and apoptosis in skeletal muscle fibres.
    Rodrigues GS; Godinho RO; Kiyomoto BH; Gamba J; Oliveira AS; Schmidt B; Tengan CH
    Sci Rep; 2016 Feb; 6():20780. PubMed ID: 26856437
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A mutation in the CASQ1 gene causes a vacuolar myopathy with accumulation of sarcoplasmic reticulum protein aggregates.
    Rossi D; Vezzani B; Galli L; Paolini C; Toniolo L; Pierantozzi E; Spinozzi S; Barone V; Pegoraro E; Bello L; Cenacchi G; Vattemi G; Tomelleri G; Ricci G; Siciliano G; Protasi F; Reggiani C; Sorrentino V
    Hum Mutat; 2014 Oct; 35(10):1163-70. PubMed ID: 25116801
    [TBL] [Abstract][Full Text] [Related]  

  • 53. β-Actin shows limited mobility and is required only for supraphysiological insulin-stimulated glucose transport in young adult soleus muscle.
    Madsen AB; Knudsen JR; Henriquez-Olguin C; Angin Y; Zaal KJ; Sylow L; Schjerling P; Ralston E; Jensen TE
    Am J Physiol Endocrinol Metab; 2018 Jul; 315(1):E110-E125. PubMed ID: 29533739
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Lack of myostatin alters intermyofibrillar mitochondria activity, unbalances redox status, and impairs tolerance to chronic repetitive contractions in muscle.
    Ploquin C; Chabi B; Fouret G; Vernus B; Feillet-Coudray C; Coudray C; Bonnieu A; Ramonatxo C
    Am J Physiol Endocrinol Metab; 2012 Apr; 302(8):E1000-8. PubMed ID: 22318951
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Mitochondria-SR interaction and mitochondrial fusion/fission in the regulation of skeletal muscle metabolism.
    Castro-Sepulveda M; Fernández-Verdejo R; Zbinden-Foncea H; Rieusset J
    Metabolism; 2023 Jul; 144():155578. PubMed ID: 37164310
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Myopathy in Marinesco-Sjögren syndrome links endoplasmic reticulum chaperone dysfunction to nuclear envelope pathology.
    Roos A; Buchkremer S; Kollipara L; Labisch T; Gatz C; Zitzelsberger M; Brauers E; Nolte K; Schröder JM; Kirschner J; Jesse CM; Goebel HH; Goswami A; Zimmermann R; Zahedi RP; Senderek J; Weis J
    Acta Neuropathol; 2014 May; 127(5):761-77. PubMed ID: 24362440
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Morphological Alterations of the Sarcotubular System in Permanent Myopathy of Hereditary Hypokalemic Periodic Paralysis with a Mutation in the CACNA1S Gene.
    Nagasaka T; Hata T; Shindo K; Adachi Y; Takeuchi M; Saito K; Takiyama Y
    J Neuropathol Exp Neurol; 2020 Dec; 79(12):1276-1292. PubMed ID: 33184660
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Reduced mitochondrial fission and impaired energy metabolism in human primary skeletal muscle cells of Megaconial Congenital Muscular Dystrophy.
    Aksu-Menges E; Eylem CC; Nemutlu E; Gizer M; Korkusuz P; Topaloglu H; Talim B; Balci-Hayta B
    Sci Rep; 2021 Sep; 11(1):18161. PubMed ID: 34518586
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Chronic inhibition of the mitochondrial ATP synthase in skeletal muscle triggers sarcoplasmic reticulum distress and tubular aggregates.
    Sánchez-González C; Herrero Martín JC; Salegi Ansa B; Núñez de Arenas C; Stančič B; Pereira MP; Contreras L; Cuezva JM; Formentini L
    Cell Death Dis; 2022 Jun; 13(6):561. PubMed ID: 35732639
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Characterization of the sarcoplasmic reticulum proteins in the thermogenic muscles of fish.
    Block BA; O'Brien J; Meissner G
    J Cell Biol; 1994 Dec; 127(5):1275-87. PubMed ID: 7962089
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.