These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 29266646)

  • 1. A matching framework to improve causal inference in interrupted time-series analysis.
    Linden A
    J Eval Clin Pract; 2018 Apr; 24(2):408-415. PubMed ID: 29266646
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combining synthetic controls and interrupted time series analysis to improve causal inference in program evaluation.
    Linden A
    J Eval Clin Pract; 2018 Apr; 24(2):447-453. PubMed ID: 29356225
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using permutation tests to enhance causal inference in interrupted time series analysis.
    Linden A
    J Eval Clin Pract; 2018 Jun; 24(3):496-501. PubMed ID: 29460383
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using machine learning to evaluate treatment effects in multiple-group interrupted time series analysis.
    Linden A; Yarnold PR
    J Eval Clin Pract; 2018 Aug; 24(4):740-744. PubMed ID: 29888469
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using group-based trajectory modelling to enhance causal inference in interrupted time series analysis.
    Linden A
    J Eval Clin Pract; 2018 Jun; 24(3):502-507. PubMed ID: 29658192
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using randomization tests to assess treatment effects in multiple-group interrupted time series analysis.
    Linden A
    J Eval Clin Pract; 2019 Feb; 25(1):5-10. PubMed ID: 30003627
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using forecast modelling to evaluate treatment effects in single-group interrupted time series analysis.
    Linden A
    J Eval Clin Pract; 2018 Aug; 24(4):695-700. PubMed ID: 29749091
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Challenges to validity in single-group interrupted time series analysis.
    Linden A
    J Eval Clin Pract; 2017 Apr; 23(2):413-418. PubMed ID: 27630090
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using machine learning to identify structural breaks in single-group interrupted time series designs.
    Linden A; Yarnold PR
    J Eval Clin Pract; 2016 Dec; 22(6):851-855. PubMed ID: 27091355
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Applying a propensity score-based weighting model to interrupted time series data: improving causal inference in programme evaluation.
    Linden A; Adams JL
    J Eval Clin Pract; 2011 Dec; 17(6):1231-8. PubMed ID: 20973870
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combining machine learning and matching techniques to improve causal inference in program evaluation.
    Linden A; Yarnold PR
    J Eval Clin Pract; 2016 Dec; 22(6):864-870. PubMed ID: 27353301
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Applied comparison of large-scale propensity score matching and cardinality matching for causal inference in observational research.
    Fortin SP; Johnston SS; Schuemie MJ
    BMC Med Res Methodol; 2021 May; 21(1):109. PubMed ID: 34030640
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Persistent threats to validity in single-group interrupted time series analysis with a cross over design.
    Linden A
    J Eval Clin Pract; 2017 Apr; 23(2):419-425. PubMed ID: 27804216
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Can synthetic controls improve causal inference in interrupted time series evaluations of public health interventions?
    Degli Esposti M; Spreckelsen T; Gasparrini A; Wiebe DJ; Bonander C; Yakubovich AR; Humphreys DK
    Int J Epidemiol; 2021 Jan; 49(6):2010-2020. PubMed ID: 33005920
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of the ability of double-robust estimators to correct bias in propensity score matching analysis. A Monte Carlo simulation study.
    Nguyen TL; Collins GS; Spence J; Devereaux PJ; Daurès JP; Landais P; Le Manach Y
    Pharmacoepidemiol Drug Saf; 2017 Dec; 26(12):1513-1519. PubMed ID: 28984050
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparison of four quasi-experimental methods: an analysis of the introduction of activity-based funding in Ireland.
    Valentelyte G; Keegan C; Sorensen J
    BMC Health Serv Res; 2022 Nov; 22(1):1311. PubMed ID: 36329423
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Introduction to propensity scores.
    Williamson EJ; Forbes A
    Respirology; 2014 Jul; 19(5):625-35. PubMed ID: 24889820
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparing Visual and Statistical Analysis in Single-Case Studies Using Published Studies.
    Harrington M; Velicer WF
    Multivariate Behav Res; 2015; 50(2):162-83. PubMed ID: 26609876
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estimating causal effects for survival (time-to-event) outcomes by combining classification tree analysis and propensity score weighting.
    Linden A; Yarnold PR
    J Eval Clin Pract; 2018 Apr; 24(2):380-387. PubMed ID: 29230910
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A methodological framework for model selection in interrupted time series studies.
    Lopez Bernal J; Soumerai S; Gasparrini A
    J Clin Epidemiol; 2018 Nov; 103():82-91. PubMed ID: 29885427
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.