These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 29266660)
21. One-step hydrothermal synthesis of manganese-containing MFI-type zeolite, Mn-ZSM-5, characterization, and catalytic oxidation of hydrocarbons. Meng Y; Genuino HC; Kuo CH; Huang H; Chen SY; Zhang L; Rossi A; Suib SL J Am Chem Soc; 2013 Jun; 135(23):8594-605. PubMed ID: 23679582 [TBL] [Abstract][Full Text] [Related]
22. Low-Temperature Transformation of Methane to Methanol on Pd Huang W; Zhang S; Tang Y; Li Y; Nguyen L; Li Y; Shan J; Xiao D; Gagne R; Frenkel AI; Tao FF Angew Chem Int Ed Engl; 2016 Oct; 55(43):13441-13445. PubMed ID: 27717086 [TBL] [Abstract][Full Text] [Related]
23. C-C Bond Formation in Syngas Conversion over Zinc Sites Grafted on ZSM-5 Zeolite. Chen Y; Gong K; Jiao F; Pan X; Hou G; Si R; Bao X Angew Chem Int Ed Engl; 2020 Apr; 59(16):6529-6534. PubMed ID: 31960561 [TBL] [Abstract][Full Text] [Related]
24. Mechanism and kinetics of direct N2O decomposition over Fe-MFI zeolites with different iron speciation from temporal analysis of products. Kondratenko EV; Pérez-Ramírez J J Phys Chem B; 2006 Nov; 110(45):22586-95. PubMed ID: 17092005 [TBL] [Abstract][Full Text] [Related]
25. Hydrogen production from a combination of the water-gas shift and redox cycle process of methane partial oxidation via lattice oxygen over LaFeO3 perovskite catalyst. Dai XP; Wu Q; Li RJ; Yu CC; Hao ZP J Phys Chem B; 2006 Dec; 110(51):25856-62. PubMed ID: 17181232 [TBL] [Abstract][Full Text] [Related]
26. Direct Conversion of Methane to Methanol under Mild Conditions over Cu-Zeolites and beyond. Tomkins P; Ranocchiari M; van Bokhoven JA Acc Chem Res; 2017 Feb; 50(2):418-425. PubMed ID: 28151649 [TBL] [Abstract][Full Text] [Related]
27. Surface and bulk aspects of mixed oxide catalytic nanoparticles: oxidation and dehydration of CH(3)OH by polyoxometallates. Nakka L; Molinari JE; Wachs IE J Am Chem Soc; 2009 Oct; 131(42):15544-54. PubMed ID: 19807071 [TBL] [Abstract][Full Text] [Related]
28. Reversible Nature of Coke Formation on Mo/ZSM-5 Methane Dehydroaromatization Catalysts. Kosinov N; Uslamin EA; Meng L; Parastaev A; Liu Y; Hensen EJM Angew Chem Int Ed Engl; 2019 May; 58(21):7068-7072. PubMed ID: 30900346 [TBL] [Abstract][Full Text] [Related]
29. Space- and time-resolved in-situ spectroscopy on the coke formation in molecular sieves: methanol-to-olefin conversion over H-ZSM-5 and H-SAPO-34. Mores D; Stavitski E; Kox MH; Kornatowski J; Olsbye U; Weckhuysen BM Chemistry; 2008; 14(36):11320-7. PubMed ID: 19021162 [TBL] [Abstract][Full Text] [Related]
30. NH3-SCR performance of fresh and hydrothermally aged Fe-ZSM-5 in standard and fast selective catalytic reduction reactions. Shi X; Liu F; Xie L; Shan W; He H Environ Sci Technol; 2013 Apr; 47(7):3293-8. PubMed ID: 23477804 [TBL] [Abstract][Full Text] [Related]
31. Unraveling reaction networks behind the catalytic oxidation of methane with H Szécsényi Á; Li G; Gascon J; Pidko EA Chem Sci; 2018 Sep; 9(33):6765-6773. PubMed ID: 30310609 [TBL] [Abstract][Full Text] [Related]
32. Coke formation during the methanol-to-olefin conversion: in situ microspectroscopy on individual H-ZSM-5 crystals with different Brønsted acidity. Mores D; Kornatowski J; Olsbye U; Weckhuysen BM Chemistry; 2011 Mar; 17(10):2874-84. PubMed ID: 21305622 [TBL] [Abstract][Full Text] [Related]
33. Methane Oxidation to Methanol Catalyzed by Cu-Oxo Clusters Stabilized in NU-1000 Metal-Organic Framework. Ikuno T; Zheng J; Vjunov A; Sanchez-Sanchez M; Ortuño MA; Pahls DR; Fulton JL; Camaioni DM; Li Z; Ray D; Mehdi BL; Browning ND; Farha OK; Hupp JT; Cramer CJ; Gagliardi L; Lercher JA J Am Chem Soc; 2017 Aug; 139(30):10294-10301. PubMed ID: 28613861 [TBL] [Abstract][Full Text] [Related]
34. On the possibility of AgZSM-5 zeolite being a partial oxidation catalyst for methane. Kuroda Y; Mori T; Sugiyama H; Uozumi Y; Ikeda K; Itadani A; Nagao M J Colloid Interface Sci; 2009 May; 333(1):294-9. PubMed ID: 19211111 [TBL] [Abstract][Full Text] [Related]
36. Highly Selective Synthesis of Acetic Acid from Hydroxyl-Mediated Oxidation of Methane at Low Temperatures. Wu B; Yin H; Ma X; Liu R; He B; Li H; Zeng J Angew Chem Int Ed Engl; 2024 Sep; ():e202412995. PubMed ID: 39222321 [TBL] [Abstract][Full Text] [Related]
37. H Xu R; Liu N; Dai C; Li Y; Zhang J; Wu B; Yu G; Chen B Angew Chem Int Ed Engl; 2021 Jul; 60(30):16634-16640. PubMed ID: 33982395 [TBL] [Abstract][Full Text] [Related]
38. The Synthesis of YNU-5 Zeolite and Its Application to the Catalysis in the Dimethyl Ether-to-Olefin Reaction. Liu Q; Yoshida Y; Nakazawa N; Inagaki S; Kubota Y Materials (Basel); 2020 Apr; 13(9):. PubMed ID: 32357489 [TBL] [Abstract][Full Text] [Related]
39. Spectroscopic and XRD characterisation of zeolite catalysts active for the oxidative methylation of benzene with methane. Adebajo MO; Long MA; Frost RL Spectrochim Acta A Mol Biomol Spectrosc; 2004 Mar; 60(4):791-9. PubMed ID: 15036089 [TBL] [Abstract][Full Text] [Related]
40. Effect of Hydrogen Addition on Coke Formation and Product Distribution in Catalytic Coupling of Methane. Postma RS; Lefferts L Ind Eng Chem Res; 2024 Apr; 63(16):6995-7002. PubMed ID: 38681869 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]