These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 29266747)

  • 1. 3D printed hyperelastic "bone" scaffolds and regional gene therapy: A novel approach to bone healing.
    Alluri R; Jakus A; Bougioukli S; Pannell W; Sugiyama O; Tang A; Shah R; Lieberman JR
    J Biomed Mater Res A; 2018 Apr; 106(4):1104-1110. PubMed ID: 29266747
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regional gene therapy with 3D printed scaffolds to heal critical sized bone defects in a rat model.
    Alluri R; Song X; Bougioukli S; Pannell W; Vakhshori V; Sugiyama O; Tang A; Park SH; Chen Y; Lieberman JR
    J Biomed Mater Res A; 2019 Oct; 107(10):2174-2182. PubMed ID: 31112357
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regional gene therapy for bone healing using a 3D printed scaffold in a rat femoral defect model.
    Kang HP; Ihn H; Robertson DM; Chen X; Sugiyama O; Tang A; Hollis R; Skorka T; Longjohn D; Oakes D; Shah R; Kohn D; Jakus AE; Lieberman JR
    J Biomed Mater Res A; 2021 Nov; 109(11):2346-2356. PubMed ID: 34018305
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gene Therapy for Bone Repair Using Human Cells: Superior Osteogenic Potential of Bone Morphogenetic Protein 2-Transduced Mesenchymal Stem Cells Derived from Adipose Tissue Compared to Bone Marrow.
    Bougioukli S; Sugiyama O; Pannell W; Ortega B; Tan MH; Tang AH; Yoho R; Oakes DA; Lieberman JR
    Hum Gene Ther; 2018 Apr; 29(4):507-519. PubMed ID: 29212377
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo bone formation following transplantation of human adipose-derived stromal cells that are not differentiated osteogenically.
    Jeon O; Rhie JW; Kwon IK; Kim JH; Kim BS; Lee SH
    Tissue Eng Part A; 2008 Aug; 14(8):1285-94. PubMed ID: 18593269
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of bone morphogenic protein-2 loaded on the 3D-printed MesoCS scaffolds.
    Huang KH; Lin YH; Shie MY; Lin CP
    J Formos Med Assoc; 2018 Oct; 117(10):879-887. PubMed ID: 30097222
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ex vivo gene therapy using human bone marrow cells overexpressing BMP-2: "Next-day" gene therapy versus standard "two-step" approach.
    Bougioukli S; Alluri R; Pannell W; Sugiyama O; Vega A; Tang A; Skorka T; Park SH; Oakes D; Lieberman JR
    Bone; 2019 Nov; 128():115032. PubMed ID: 31398502
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of mussel-inspired 3D-printed poly (lactic acid) scaffold grafted with bone morphogenetic protein-2 for stimulating osteogenesis.
    Cheng CH; Chen YW; Kai-Xing Lee A; Yao CH; Shie MY
    J Mater Sci Mater Med; 2019 Jun; 30(7):78. PubMed ID: 31222566
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved Bone Regeneration With Multiporous PLGA Scaffold and BMP-2-Transduced Human Adipose-Derived Stem Cells by Cell-Permeable Peptide.
    Park S; Heo HA; Lee KB; Kim HG; Pyo SW
    Implant Dent; 2017 Feb; 26(1):4-11. PubMed ID: 27893514
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prevascularization of 3D printed bone scaffolds by bioactive hydrogels and cell co-culture.
    Kuss MA; Wu S; Wang Y; Untrauer JB; Li W; Lim JY; Duan B
    J Biomed Mater Res B Appl Biomater; 2018 Jul; 106(5):1788-1798. PubMed ID: 28901689
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A 3D-Printed Biomaterial Scaffold Reinforced with Inorganic Fillers for Bone Tissue Engineering: In Vitro Assessment and In Vivo Animal Studies.
    Sithole MN; Kumar P; Du Toit LC; Erlwanger KH; Ubanako PN; Choonara YE
    Int J Mol Sci; 2023 Apr; 24(8):. PubMed ID: 37108772
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface modification of 3D-printed porous scaffolds via mussel-inspired polydopamine and effective immobilization of rhBMP-2 to promote osteogenic differentiation for bone tissue engineering.
    Lee SJ; Lee D; Yoon TR; Kim HK; Jo HH; Park JS; Lee JH; Kim WD; Kwon IK; Park SA
    Acta Biomater; 2016 Aug; 40():182-191. PubMed ID: 26868173
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanoparticle delivery of the bone morphogenetic protein 4 gene to adipose-derived stem cells promotes articular cartilage repair in vitro and in vivo.
    Shi J; Zhang X; Zhu J; Pi Y; Hu X; Zhou C; Ao Y
    Arthroscopy; 2013 Dec; 29(12):2001-2011.e2. PubMed ID: 24286799
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alveolar bone repair of rhesus monkeys by using BMP-2 gene and mesenchymal stem cells loaded three-dimensional printed bioglass scaffold.
    Wang L; Xu W; Chen Y; Wang J
    Sci Rep; 2019 Dec; 9(1):18175. PubMed ID: 31796797
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional printed polycaprolactone-based scaffolds provide an advantageous environment for osteogenic differentiation of human adipose-derived stem cells.
    Rumiński S; Ostrowska B; Jaroszewicz J; Skirecki T; Włodarski K; Święszkowski W; Lewandowska-Szumieł M
    J Tissue Eng Regen Med; 2018 Jan; 12(1):e473-e485. PubMed ID: 27599449
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The application of BMP-12-overexpressing mesenchymal stem cells loaded 3D-printed PLGA scaffolds in rabbit rotator cuff repair.
    Chen P; Cui L; Chen G; You T; Li W; Zuo J; Wang C; Zhang W; Jiang C
    Int J Biol Macromol; 2019 Oct; 138():79-88. PubMed ID: 31295489
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lentiviral Gene Therapy for Bone Repair Using Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells.
    Bougioukli S; Saitta B; Sugiyama O; Tang AH; Elphingstone J; Evseenko D; Lieberman JR
    Hum Gene Ther; 2019 Jul; 30(7):906-917. PubMed ID: 30773946
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An in vivo study on the effect of scaffold geometry and growth factor release on the healing of bone defects.
    Yilgor P; Yilmaz G; Onal MB; Solmaz I; Gundogdu S; Keskil S; Sousa RA; Reis RL; Hasirci N; Hasirci V
    J Tissue Eng Regen Med; 2013 Sep; 7(9):687-96. PubMed ID: 22396311
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving PEEK bioactivity for craniofacial reconstruction using a 3D printed scaffold embedded with mesenchymal stem cells.
    Roskies M; Jordan JO; Fang D; Abdallah MN; Hier MP; Mlynarek A; Tamimi F; Tran SD
    J Biomater Appl; 2016 Jul; 31(1):132-9. PubMed ID: 26980549
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [A novel tissue-engineered bone constructed by using human adipose-derived stem cells and biomimetic calcium phosphate scaffold coprecipitated with bone morphogenetic protein-2].
    Jiang WR; Zhang X; Liu YS; Wu G; Ge YJ; Zhou YS
    Beijing Da Xue Xue Bao Yi Xue Ban; 2017 Feb; 49(1):6-15. PubMed ID: 28202997
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.