These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 29266950)

  • 1. Engineering Dirac Materials: Metamorphic InAs
    Suchalkin S; Belenky G; Ermolaev M; Moon S; Jiang Y; Graf D; Smirnov D; Laikhtman B; Shterengas L; Kipshidze G; Svensson SP; Sarney WL
    Nano Lett; 2018 Jan; 18(1):412-417. PubMed ID: 29266950
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bias-selectable nBn dual-band long-/very long-wavelength infrared photodetectors based on InAs/InAs
    Haddadi A; Dehzangi A; Chevallier R; Adhikary S; Razeghi M
    Sci Rep; 2017 Jun; 7(1):3379. PubMed ID: 28611381
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Large-Composition-Range Pure-Phase Homogeneous InAs
    Wen L; Pan D; Liu L; Tong S; Zhuo R; Zhao J
    J Phys Chem Lett; 2022 Jan; 13(2):598-605. PubMed ID: 35019661
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dirac cone move and bandgap on/off switching of graphene superlattice.
    Jia TT; Zheng MM; Fan XY; Su Y; Li SJ; Liu HY; Chen G; Kawazoe Y
    Sci Rep; 2016 Jan; 6():18869. PubMed ID: 26732904
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generation of Anisotropic Massless Dirac Fermions and Asymmetric Klein Tunneling in Few-Layer Black Phosphorus Superlattices.
    Li Z; Cao T; Wu M; Louie SG
    Nano Lett; 2017 Apr; 17(4):2280-2286. PubMed ID: 28231010
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct 3D mapping of the Fermi surface and Fermi velocity.
    Medjanik K; Fedchenko O; Chernov S; Kutnyakhov D; Ellguth M; Oelsner A; Schönhense B; Peixoto TRF; Lutz P; Min CH; Reinert F; Däster S; Acremann Y; Viefhaus J; Wurth W; Elmers HJ; Schönhense G
    Nat Mater; 2017 Jun; 16(6):615-621. PubMed ID: 28272500
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Raman scattering from optical phonons in InAs1-xSbx/InAs strained-layer superlattices.
    Artús L; Stradling RA; Li YB; Webb SJ; Yuen WT; Chung SJ; Cuscó R
    Phys Rev B Condens Matter; 1996 Dec; 54(23):16373-16376. PubMed ID: 9985747
    [No Abstract]   [Full Text] [Related]  

  • 8. Spin-Gapless Semiconductors.
    Yue Z; Li Z; Sang L; Wang X
    Small; 2020 Aug; 16(31):e1905155. PubMed ID: 32529745
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Upside-down InAs/InAs
    Deng G; Song X; Fan M; Xiao T; Luo Z; Chen N; Yang W; Zhang Y
    Opt Express; 2020 Apr; 28(9):13616-13624. PubMed ID: 32403832
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnetic Kronig-Penney-type graphene superlattices: finite energy Dirac points with anisotropic velocity renormalization.
    Qui Le V; Huy Pham C; Lien Nguyen V
    J Phys Condens Matter; 2012 Aug; 24(34):345502. PubMed ID: 22850460
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Giant g-factors and fully spin-polarized states in metamorphic short-period InAsSb/InSb superlattices.
    Jiang Y; Ermolaev M; Kipshidze G; Moon S; Ozerov M; Smirnov D; Jiang Z; Suchalkin S
    Nat Commun; 2022 Oct; 13(1):5960. PubMed ID: 36216829
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of the Strain Influence on the InAs/InAsSb Type-II Superlattice Effective Masses.
    Manyk T; Rutkowski J; Kopytko M; Martyniuk P
    Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36365941
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Borophosphene: A New Anisotropic Dirac Cone Monolayer with a High Fermi Velocity and a Unique Self-Doping Feature.
    Zhang Y; Kang J; Zheng F; Gao PF; Zhang SL; Wang LW
    J Phys Chem Lett; 2019 Nov; 10(21):6656-6663. PubMed ID: 31608641
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Designer Topological Insulator with Enhanced Gap and Suppressed Bulk Conduction in Bi
    Levy I; Youmans C; Garcia TA; Deng H; Alsheimer S; Testelin C; Krusin-Elbaum L; Ghaemi P; Tamargo MC
    Nano Lett; 2020 May; 20(5):3420-3426. PubMed ID: 32315190
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Iuliacumite: A Novel Chemical Short-Range Order in a Two-Dimensional Wurtzite Single Monolayer InAs
    Schnedler M; Xu T; Lefebvre I; Nys JP; Plissard SR; Berthe M; Eisele H; Dunin-Borkowski RE; Ebert P; Grandidier B
    Nano Lett; 2019 Dec; 19(12):8801-8805. PubMed ID: 31751142
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Touching points in the energy band structure of bilayer graphene superlattices.
    Pham CH; Nguyen VL
    J Phys Condens Matter; 2014 Oct; 26(42):425502. PubMed ID: 25274067
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transport evidence for Fermi-arc-mediated chirality transfer in the Dirac semimetal Cd3As2.
    Moll PJ; Nair NL; Helm T; Potter AC; Kimchi I; Vishwanath A; Analytis JG
    Nature; 2016 Jul; 535(7611):266-70. PubMed ID: 27376477
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pressure engineering of the Dirac fermions in quasi-one-dimensional Tl
    Song Z; Li B; Xu C; Wu S; Qian B; Chen T; Biswas PK; Xu X; Sun J
    J Phys Condens Matter; 2020 May; 32(21):215402. PubMed ID: 32032009
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strain-induced indirect-to-direct bandgap transition in an np-type LaAlO
    Wang L; Pan W; Hu WX; Sun DY
    Phys Chem Chem Phys; 2019 Mar; 21(13):7075-7082. PubMed ID: 30882130
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly anisotropic Dirac cones in epitaxial graphene modulated by an island superlattice.
    Rusponi S; Papagno M; Moras P; Vlaic S; Etzkorn M; Sheverdyaeva PM; Pacilé D; Brune H; Carbone C
    Phys Rev Lett; 2010 Dec; 105(24):246803. PubMed ID: 21231546
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.