These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
44. Quasi-one-dimensional Sb Huang M; Cai Z; Chen S J Chem Phys; 2020 Jul; 153(1):014703. PubMed ID: 32640810 [TBL] [Abstract][Full Text] [Related]
45. Topological and transport properties of Dirac fermions in an antiferromagnetic metallic phase of iron-based superconductors. Morinari T; Kaneshita E; Tohyama T Phys Rev Lett; 2010 Jul; 105(3):037203. PubMed ID: 20867799 [TBL] [Abstract][Full Text] [Related]
47. Single-layer and bilayer graphene superlattices: collimation, additional Dirac points and Dirac lines. Barbier M; Vasilopoulos P; Peeters FM Philos Trans A Math Phys Eng Sci; 2010 Dec; 368(1932):5499-524. PubMed ID: 21041227 [TBL] [Abstract][Full Text] [Related]
48. Weyl nodes in periodic structures of superconductors and spin-active materials. Keles A; Zhao E Philos Trans A Math Phys Eng Sci; 2018 Aug; 376(2125):. PubMed ID: 29941626 [TBL] [Abstract][Full Text] [Related]
49. Stable topological insulators achieved using high energy electron beams. Zhao L; Konczykowski M; Deng H; Korzhovska I; Begliarbekov M; Chen Z; Papalazarou E; Marsi M; Perfetti L; Hruban A; Wołoś A; Krusin-Elbaum L Nat Commun; 2016 Mar; 7():10957. PubMed ID: 26961901 [TBL] [Abstract][Full Text] [Related]
50. Graphene-based heterostructures with moiré superlattice that preserve the Dirac cone: a first-principles study. Kong X; Li L; Peeters FM J Phys Condens Matter; 2019 Jun; 31(25):255302. PubMed ID: 30909168 [TBL] [Abstract][Full Text] [Related]
51. 2D Ca Du J; Shi JJ Adv Mater; 2019 Dec; 31(51):e1905643. PubMed ID: 31682038 [TBL] [Abstract][Full Text] [Related]
52. Bandgap opening in graphene induced by patterned hydrogen adsorption. Balog R; Jørgensen B; Nilsson L; Andersen M; Rienks E; Bianchi M; Fanetti M; Laegsgaard E; Baraldi A; Lizzit S; Sljivancanin Z; Besenbacher F; Hammer B; Pedersen TG; Hofmann P; Hornekaer L Nat Mater; 2010 Apr; 9(4):315-9. PubMed ID: 20228819 [TBL] [Abstract][Full Text] [Related]
53. Are the surface Fermi arcs in Dirac semimetals topologically protected? Kargarian M; Randeria M; Lu YM Proc Natl Acad Sci U S A; 2016 Aug; 113(31):8648-52. PubMed ID: 27436895 [TBL] [Abstract][Full Text] [Related]
54. Band alignment tailoring of InAs1-xSbx/GaAs quantum dots: control of type I to type II transition. He J; Reyner CJ; Liang BL; Nunna K; Huffaker DL; Pavarelli N; Gradkowski K; Ochalski TJ; Huyet G; Dorogan VG; Mazur YI; Salamo GJ Nano Lett; 2010 Aug; 10(8):3052-6. PubMed ID: 20698619 [TBL] [Abstract][Full Text] [Related]
55. Transport in semiconductor nanowire superlattices described by coupled quantum mechanical and kinetic models. Alvaro M; Bonilla LL; Carretero M; Melnik RV; Prabhakar S J Phys Condens Matter; 2013 Aug; 25(33):335301. PubMed ID: 23877936 [TBL] [Abstract][Full Text] [Related]
56. Modification of valence-band symmetry and Auger threshold energy in biaxially compressed InAs1-xSbx. Kurtz SR; Biefeld RM; Dawson LR Phys Rev B Condens Matter; 1995 Mar; 51(11):7310-7313. PubMed ID: 9977300 [No Abstract] [Full Text] [Related]
57. Tinene: a two-dimensional Dirac material with a 72 meV band gap. Cai B; Zhang S; Hu Z; Hu Y; Zou Y; Zeng H Phys Chem Chem Phys; 2015 May; 17(19):12634-8. PubMed ID: 25904409 [TBL] [Abstract][Full Text] [Related]
58. Strong mechanical anisotropy and an anisotropic Dirac state in 2D C Tan R; Chen X; Dai L; Ouyang Y; Cao L; Tang Z; Ma M; Wei X; Zhong G Phys Chem Chem Phys; 2024 Apr; 26(15):11782-11788. PubMed ID: 38566583 [TBL] [Abstract][Full Text] [Related]
59. Imaging Bulk and Edge Transport near the Dirac Point in Graphene Moiré Superlattices. Dou Z; Morikawa S; Cresti A; Wang SW; Smith CG; Melios C; Kazakova O; Watanabe K; Taniguchi T; Masubuchi S; Machida T; Connolly MR Nano Lett; 2018 Apr; 18(4):2530-2537. PubMed ID: 29529371 [TBL] [Abstract][Full Text] [Related]