These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

828 related articles for article (PubMed ID: 29267207)

  • 41. Polymeric scaffolds for bone tissue engineering.
    Liu X; Ma PX
    Ann Biomed Eng; 2004 Mar; 32(3):477-86. PubMed ID: 15095822
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Biomimetic component coating on 3D scaffolds using high bioactivity of mesoporous bioactive ceramics.
    Yun HS; Kim SH; Khang D; Choi J; Kim HH; Kang M
    Int J Nanomedicine; 2011; 6():2521-31. PubMed ID: 22072886
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Silk scaffolds in bone tissue engineering: An overview.
    Bhattacharjee P; Kundu B; Naskar D; Kim HW; Maiti TK; Bhattacharya D; Kundu SC
    Acta Biomater; 2017 Nov; 63():1-17. PubMed ID: 28941652
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Engineering the regenerative microenvironment with biomaterials.
    Rice JJ; Martino MM; De Laporte L; Tortelli F; Briquez PS; Hubbell JA
    Adv Healthc Mater; 2013 Jan; 2(1):57-71. PubMed ID: 23184739
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Role of biomaterials, therapeutic molecules and cells for hepatic tissue engineering.
    Vasanthan KS; Subramanian A; Krishnan UM; Sethuraman S
    Biotechnol Adv; 2012; 30(3):742-52. PubMed ID: 22265845
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Biomimetic materials for tissue engineering.
    Shin H; Jo S; Mikos AG
    Biomaterials; 2003 Nov; 24(24):4353-64. PubMed ID: 12922148
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Development of osteopromotive poly (octamethylene citrate glycerophosphate) for enhanced bone regeneration.
    He Y; Li Q; Ma C; Xie D; Li L; Zhao Y; Shan D; Chomos SK; Dong C; Tierney JW; Sun L; Lu D; Gui L; Yang J
    Acta Biomater; 2019 Jul; 93():180-191. PubMed ID: 30926580
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Three-dimensional microfabricated scaffolds with cardiac extracellular matrix-like architecture.
    Rosellini E; Vozzi G; Barbani N; Giusti P; Cristallini C
    Int J Artif Organs; 2010 Dec; 33(12):885-94. PubMed ID: 21186470
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Novel synthesis strategies for natural polymer and composite biomaterials as potential scaffolds for tissue engineering.
    Ko HF; Sfeir C; Kumta PN
    Philos Trans A Math Phys Eng Sci; 2010 Apr; 368(1917):1981-97. PubMed ID: 20308112
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Bioactive peptide-modified biomaterials for bone regeneration.
    Lee JY; Choi YS; Lee SJ; Chung CP; Park YJ
    Curr Pharm Des; 2011; 17(25):2663-76. PubMed ID: 21728982
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Preparation of Polymeric and Composite Scaffolds by 3D Bioprinting.
    Mora-Boza A; Lopez-Donaire ML
    Adv Exp Med Biol; 2018; 1058():221-245. PubMed ID: 29691824
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Recent trends in the application of widely used natural and synthetic polymer nanocomposites in bone tissue regeneration.
    Bharadwaz A; Jayasuriya AC
    Mater Sci Eng C Mater Biol Appl; 2020 May; 110():110698. PubMed ID: 32204012
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A novel method for biomaterial scaffold internal architecture design to match bone elastic properties with desired porosity.
    Lin CY; Kikuchi N; Hollister SJ
    J Biomech; 2004 May; 37(5):623-36. PubMed ID: 15046991
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Surface modification and property analysis of biomedical polymers used for tissue engineering.
    Ma Z; Mao Z; Gao C
    Colloids Surf B Biointerfaces; 2007 Nov; 60(2):137-57. PubMed ID: 17683921
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Scaffold materials from glycosylated and PEGylated bovine serum albumin.
    Wang K; David AE; Choi YS; Wu Y; Buschle-Diller G
    J Biomed Mater Res A; 2015 Sep; 103(9):2839-46. PubMed ID: 25691091
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Composite polymer-bioceramic scaffolds with drug delivery capability for bone tissue engineering.
    Mouriño V; Cattalini JP; Roether JA; Dubey P; Roy I; Boccaccini AR
    Expert Opin Drug Deliv; 2013 Oct; 10(10):1353-65. PubMed ID: 23777443
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Biomimetic materials for tissue engineering.
    Ma PX
    Adv Drug Deliv Rev; 2008 Jan; 60(2):184-98. PubMed ID: 18045729
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Improved biomaterials for tissue engineering applications: surface modification of polymers.
    Vasita R; Shanmugam I K; Katt DS
    Curr Top Med Chem; 2008; 8(4):341-53. PubMed ID: 18393896
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Synthesis and electrospinning of ε-polycaprolactone-bioactive glass hybrid biomaterials via a sol-gel process.
    Allo BA; Rizkalla AS; Mequanint K
    Langmuir; 2010 Dec; 26(23):18340-8. PubMed ID: 21050002
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Dynamic Synthetic Biointerfaces: From Reversible Chemical Interactions to Tunable Biological Effects.
    Ma Y; Tian X; Liu L; Pan J; Pan G
    Acc Chem Res; 2019 Jun; 52(6):1611-1622. PubMed ID: 30793586
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 42.