These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 29267366)
1. Comparative transcriptome analyses reveal the genetic basis underlying the immune function of three amphibians' skin. Fan W; Jiang Y; Zhang M; Yang D; Chen Z; Sun H; Lan X; Yan F; Xu J; Yuan W PLoS One; 2017; 12(12):e0190023. PubMed ID: 29267366 [TBL] [Abstract][Full Text] [Related]
2. Comparative transcriptome analyses of seven anurans reveal functions and adaptations of amphibian skin. Huang L; Li J; Anboukaria H; Luo Z; Zhao M; Wu H Sci Rep; 2016 Apr; 6():24069. PubMed ID: 27040083 [TBL] [Abstract][Full Text] [Related]
3. Transcriptome analysis of the endangered Chinese giant salamander (Andrias davidianus): Immune modulation in response to Aeromonas hydrophila infection. Qi Z; Zhang Q; Wang Z; Ma T; Zhou J; Holland JW; Gao Q Vet Immunol Immunopathol; 2016 Jan; 169():85-95. PubMed ID: 26620078 [TBL] [Abstract][Full Text] [Related]
4. Identification of the first cathelicidin gene from skin of Chinese giant salamanders Andrias davidianus with its potent antimicrobial activity. Yang H; Lu B; Zhou D; Zhao L; Song W; Wang L Dev Comp Immunol; 2017 Dec; 77():141-149. PubMed ID: 28801228 [TBL] [Abstract][Full Text] [Related]
5. The role of amphibian antimicrobial peptides in protection of amphibians from pathogens linked to global amphibian declines. Rollins-Smith LA Biochim Biophys Acta; 2009 Aug; 1788(8):1593-9. PubMed ID: 19327341 [TBL] [Abstract][Full Text] [Related]
6. Genetic signals of high-altitude adaptation in amphibians: a comparative transcriptome analysis. Yang W; Qi Y; Fu J BMC Genet; 2016 Oct; 17(1):134. PubMed ID: 27716028 [TBL] [Abstract][Full Text] [Related]
7. De novo transcriptomic analysis of peripheral blood lymphocytes from the Chinese goose: gene discovery and immune system pathway description. Tariq M; Chen R; Yuan H; Liu Y; Wu Y; Wang J; Xia C PLoS One; 2015; 10(3):e0121015. PubMed ID: 25816068 [TBL] [Abstract][Full Text] [Related]
8. Multi-tissue transcriptomes of caecilian amphibians highlight incomplete knowledge of vertebrate gene families. Torres-Sánchez M; Creevey CJ; Kornobis E; Gower DJ; Wilkinson M; San Mauro D DNA Res; 2019 Feb; 26(1):13-20. PubMed ID: 30351380 [TBL] [Abstract][Full Text] [Related]
9. Predicted disease susceptibility in a Panamanian amphibian assemblage based on skin peptide defenses. Woodhams DC; Voyles J; Lips KR; Carey C; Rollins-Smith LA J Wildl Dis; 2006 Apr; 42(2):207-18. PubMed ID: 16870844 [TBL] [Abstract][Full Text] [Related]
10. Comparative transcriptomes of three different skin sites for the Asiatic toad ( Lan Y; He L; Dong X; Tang R; Li W; Wang J; Wang L; Yue B; Price M; Guo T; Fan Z PeerJ; 2022; 10():e12993. PubMed ID: 35223212 [TBL] [Abstract][Full Text] [Related]
11. Transcriptome analyses reveal molecular mechanisms that regulate endochondral ossification in amphibian Bufo gargarizans during metamorphosis. Bo X; Wu M; Xiao H; Wang H Biochim Biophys Acta Gen Subj; 2018 Dec; 1862(12):2632-2644. PubMed ID: 30076880 [TBL] [Abstract][Full Text] [Related]
12. Antimicrobial peptides from amphibian skin potently inhibit human immunodeficiency virus infection and transfer of virus from dendritic cells to T cells. VanCompernolle SE; Taylor RJ; Oswald-Richter K; Jiang J; Youree BE; Bowie JH; Tyler MJ; Conlon JM; Wade D; Aiken C; Dermody TS; KewalRamani VN; Rollins-Smith LA; Unutmaz D J Virol; 2005 Sep; 79(18):11598-606. PubMed ID: 16140737 [TBL] [Abstract][Full Text] [Related]
13. Transcriptomic variation of locally-infected skin of Epinephelus coioides reveals the mucosal immune mechanism against Cryptocaryon irritans. Hu Y; Li A; Xu Y; Jiang B; Lu G; Luo X Fish Shellfish Immunol; 2017 Jul; 66():398-410. PubMed ID: 28526573 [TBL] [Abstract][Full Text] [Related]
14. Peptides Isolated from Amphibian Skin Secretions with Emphasis on Antimicrobial Peptides. Chen X; Liu S; Fang J; Zheng S; Wang Z; Jiao Y; Xia P; Wu H; Ma Z; Hao L Toxins (Basel); 2022 Oct; 14(10):. PubMed ID: 36287990 [TBL] [Abstract][Full Text] [Related]
15. Transcriptome analysis of soiny mullet (Liza haematocheila) spleen in response to Streptococcus dysgalactiae. Qi Z; Wu P; Zhang Q; Wei Y; Wang Z; Qiu M; Shao R; Li Y; Gao Q Fish Shellfish Immunol; 2016 Feb; 49():194-204. PubMed ID: 26707943 [TBL] [Abstract][Full Text] [Related]
16. RNA-seq analysis provides insight into molecular adaptations of Andrias davidianus. Geng X; Zhang L; Zang X; Guo J; Xu C Dev Genes Evol; 2019 Nov; 229(5-6):197-206. PubMed ID: 31734771 [TBL] [Abstract][Full Text] [Related]
17. Transcriptome analysis and de novo annotation of the critically endangered Amur sturgeon (Acipenser schrenckii). Zhang XJ; Jiang HY; Li LM; Yuan LH; Chen JP Genet Mol Res; 2016 Jun; 15(2):. PubMed ID: 27420941 [TBL] [Abstract][Full Text] [Related]
18. Amphibians have immunoglobulins similar to ancestral IgD and IgA from Amniotes. Estevez O; Garet E; Olivieri D; Gambón-Deza F Mol Immunol; 2016 Jan; 69():52-61. PubMed ID: 26675067 [TBL] [Abstract][Full Text] [Related]
19. De novo assembly and analysis of the transcriptome of Ocimum americanum var. pilosum under cold stress. Zhan X; Yang L; Wang D; Zhu JK; Lang Z BMC Genomics; 2016 Mar; 17():209. PubMed ID: 26955811 [TBL] [Abstract][Full Text] [Related]
20. Neuroendocrine-immune system interactions in amphibians: implications for understanding global amphibian declines. Rollins-Smith LA Immunol Res; 2001; 23(2-3):273-80. PubMed ID: 11444392 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]