These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 29267888)
41. Improving the insecticidal activity of Bacillus thuringiensis subsp. aizawai against Spodoptera exigua by chromosomal expression of a chitinase gene. Thamthiankul S; Moar WJ; Miller ME; Panbangred W Appl Microbiol Biotechnol; 2004 Aug; 65(2):183-92. PubMed ID: 15107949 [TBL] [Abstract][Full Text] [Related]
42. A novel Bacillus thuringiensis strain LLB6, isolated from bryophytes, and its new cry2Ac-type gene. Zhang LL; Lin J; Luo L; Guan CY; Zhang QL; Guan Y; Zhang Y; Ji JT; Huang ZP; Guan X Lett Appl Microbiol; 2007 Mar; 44(3):301-7. PubMed ID: 17309508 [TBL] [Abstract][Full Text] [Related]
43. Enhancement of Bacillus thuringiensis insecticidal activity by combining Cry1Ac and bi-functional toxin HWTX-XI from spider. Sun Y; Fu Z; He X; Yuan C; Ding X; Xia L J Invertebr Pathol; 2016 Mar; 135():60-2. PubMed ID: 25721170 [TBL] [Abstract][Full Text] [Related]
44. Beetle-specific Bacillus thuringiensis Cry3Aa toxin reduces larval growth and curbs reproduction in Spodoptera littoralis (Boisd.). Hussein HM; Habustová O; Sehnal F Pest Manag Sci; 2005 Dec; 61(12):1186-92. PubMed ID: 16152673 [TBL] [Abstract][Full Text] [Related]
45. Bacillus thuringiensis insecticidal three-domain Cry toxins: mode of action, insect resistance and consequences for crop protection. Pardo-López L; Soberón M; Bravo A FEMS Microbiol Rev; 2013 Jan; 37(1):3-22. PubMed ID: 22540421 [TBL] [Abstract][Full Text] [Related]
46. Characterization of field-evolved resistance to Bacillus thuringiensis-derived Cry1F δ-endotoxin in Spodoptera frugiperda populations from Argentina. Chandrasena DI; Signorini AM; Abratti G; Storer NP; Olaciregui ML; Alves AP; Pilcher CD Pest Manag Sci; 2018 Mar; 74(3):746-754. PubMed ID: 29072821 [TBL] [Abstract][Full Text] [Related]
47. Histopathological effects and determination of the putative receptor of Bacillus thuringiensis Cry1Da toxin in Spodoptera littoralis midgut. BenFarhat-Touzri D; Saadaoui M; Abdelkefi-Mesrati L; Saadaoui I; Azzouz H; Tounsi S J Invertebr Pathol; 2013 Feb; 112(2):142-5. PubMed ID: 23220238 [TBL] [Abstract][Full Text] [Related]
48. Overproduction of delta-endotoxins by sporeless Bacillus thuringiensis mutants obtained by nitrous acid mutagenesis. Ben Khedher S; Zouari N; Messaddeq N; Schultz P; Jaoua S Curr Microbiol; 2011 Jan; 62(1):38-43. PubMed ID: 20490495 [TBL] [Abstract][Full Text] [Related]
49. Broad-spectrum cross-resistance in Spodoptera exigua from selection with a marginally toxic Cry protein. Hernández-Martínez P; Ferré J; Escriche B Pest Manag Sci; 2009 Jun; 65(6):645-50. PubMed ID: 19253909 [TBL] [Abstract][Full Text] [Related]
50. Activity spectra of Bacillus thuringiensis delta-endotoxins against eight insect cell lines. Gringorten JL; Sohi SS; Masson L In Vitro Cell Dev Biol Anim; 1999 May; 35(5):299-303. PubMed ID: 10475277 [TBL] [Abstract][Full Text] [Related]
51. RNA interference-mediated knockdown of three putative aminopeptidases N affects susceptibility of Spodoptera exigua larvae to Bacillus thuringiensis Cry1Ca. Ren XL; Ma Y; Cui JJ; Li GQ J Insect Physiol; 2014 Aug; 67():28-36. PubMed ID: 24932922 [TBL] [Abstract][Full Text] [Related]
52. [Screening of Bacillus thuringiensis strains containing vip3A genes and analysis of gene conservation]. Chen JW; Tang LX; Song SY; Yuan MJ; Pang Y Sheng Wu Gong Cheng Xue Bao; 2003 Sep; 19(5):538-44. PubMed ID: 15969080 [TBL] [Abstract][Full Text] [Related]
53. Vegetative insecticidal protein enhancing the toxicity of Bacillus thuringiensis subsp kurstaki against Spodoptera exigua. Zhu C; Ruan L; Peng D; Yu Z; Sun M Lett Appl Microbiol; 2006 Feb; 42(2):109-14. PubMed ID: 16441373 [TBL] [Abstract][Full Text] [Related]
54. Melanin pigment formation and increased UV resistance in Bacillus thuringiensis following high temperature induction. Ruan L; Yu Z; Fang B; He W; Wang Y; Shen P Syst Appl Microbiol; 2004 May; 27(3):286-9. PubMed ID: 15214633 [TBL] [Abstract][Full Text] [Related]
55. Susceptibility, mechanisms of response and resistance to Bacillus thuringiensis toxins in Spodoptera spp. Herrero S; Bel Y; Hernández-Martínez P; Ferré J Curr Opin Insect Sci; 2016 Jun; 15():89-96. PubMed ID: 27436737 [TBL] [Abstract][Full Text] [Related]
56. Heterologous expression of Bacillus thuringiensis vegetative insecticidal protein-encoding gene vip3LB in Photorhabdus temperata strain K122 and oral toxicity against the lepidoptera Ephestia kuehniella and Spodoptera littoralis. Jamoussi K; Sellami S; Abdelkefi-Mesrati L; Givaudan A; Jaoua S Mol Biotechnol; 2009 Oct; 43(2):97-103. PubMed ID: 19462262 [TBL] [Abstract][Full Text] [Related]
57. Cry1 Bt Susceptibilities of Fall Armyworm (Lepidoptera: Noctuidae) Host Strains. Ingber DA; Mason CE; Flexner L J Econ Entomol; 2018 Feb; 111(1):361-368. PubMed ID: 29240921 [TBL] [Abstract][Full Text] [Related]
58. Isolation and characterization of a new Bacillus thuringiensis strain with a promising toxicity against Lepidopteran pests. Boukedi H; Sellami S; Ktari S; Belguith-Ben Hassan N; Sellami-Boudawara T; Tounsi S; Abdelkefi-Mesrati L Microbiol Res; 2016; 186-187():9-15. PubMed ID: 27242138 [TBL] [Abstract][Full Text] [Related]
59. New Bacillus thuringiensis toxin combinations for biological control of lepidopteran larvae. Elleuch J; Zghal RZ; Jemaà M; Azzouz H; Tounsi S; Jaoua S Int J Biol Macromol; 2014 Apr; 65():148-54. PubMed ID: 24444881 [TBL] [Abstract][Full Text] [Related]
60. Involvement of the processing step in the susceptibility/tolerance of two lepidopteran larvae to Bacillus thuringiensis Cry1Aa toxin. Dammak M; Khedher SB; Boukedi H; Chaib I; Laarif A; Tounsi S Pestic Biochem Physiol; 2016 Feb; 127():46-50. PubMed ID: 26821657 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]