These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
532 related articles for article (PubMed ID: 29268099)
1. Distinct Inhibitory Circuits Orchestrate Cortical beta and gamma Band Oscillations. Chen G; Zhang Y; Li X; Zhao X; Ye Q; Lin Y; Tao HW; Rasch MJ; Zhang X Neuron; 2017 Dec; 96(6):1403-1418.e6. PubMed ID: 29268099 [TBL] [Abstract][Full Text] [Related]
2. Excitatory Inputs Determine Phase-Locking Strength and Spike-Timing of CA1 Stratum Oriens/Alveus Parvalbumin and Somatostatin Interneurons during Intrinsically Generated Hippocampal Theta Rhythm. Huh CY; Amilhon B; Ferguson KA; Manseau F; Torres-Platas SG; Peach JP; Scodras S; Mechawar N; Skinner FK; Williams S J Neurosci; 2016 Jun; 36(25):6605-22. PubMed ID: 27335395 [TBL] [Abstract][Full Text] [Related]
3. Synchronized gamma-frequency inhibition in neocortex depends on excitatory-inhibitory interactions but not electrical synapses. Neske GT; Connors BW J Neurophysiol; 2016 Aug; 116(2):351-68. PubMed ID: 27121576 [TBL] [Abstract][Full Text] [Related]
4. Parvalbumin and Somatostatin Interneurons Contribute to the Generation of Hippocampal Gamma Oscillations. Antonoudiou P; Tan YL; Kontou G; Upton AL; Mann EO J Neurosci; 2020 Sep; 40(40):7668-7687. PubMed ID: 32859716 [TBL] [Abstract][Full Text] [Related]
5. Contribution of parvalbumin and somatostatin-expressing GABAergic neurons to slow oscillations and the balance in beta-gamma oscillations across cortical layers. Kuki T; Fujihara K; Miwa H; Tamamaki N; Yanagawa Y; Mushiake H Front Neural Circuits; 2015; 9():6. PubMed ID: 25691859 [TBL] [Abstract][Full Text] [Related]
6. Cortically projecting basal forebrain parvalbumin neurons regulate cortical gamma band oscillations. Kim T; Thankachan S; McKenna JT; McNally JM; Yang C; Choi JH; Chen L; Kocsis B; Deisseroth K; Strecker RE; Basheer R; Brown RE; McCarley RW Proc Natl Acad Sci U S A; 2015 Mar; 112(11):3535-40. PubMed ID: 25733878 [TBL] [Abstract][Full Text] [Related]
7. Optogenetic activation of parvalbumin and somatostatin interneurons selectively restores theta-nested gamma oscillations and oscillation-induced spike timing-dependent long-term potentiation impaired by amyloid β oligomers. Park K; Lee J; Jang HJ; Richards BA; Kohl MM; Kwag J BMC Biol; 2020 Jan; 18(1):7. PubMed ID: 31937327 [TBL] [Abstract][Full Text] [Related]
8. Inhibition-induced theta resonance in cortical circuits. Stark E; Eichler R; Roux L; Fujisawa S; Rotstein HG; Buzsáki G Neuron; 2013 Dec; 80(5):1263-76. PubMed ID: 24314731 [TBL] [Abstract][Full Text] [Related]
9. Control of timing, rate and bursts of hippocampal place cells by dendritic and somatic inhibition. Royer S; Zemelman BV; Losonczy A; Kim J; Chance F; Magee JC; Buzsáki G Nat Neurosci; 2012 Mar; 15(5):769-75. PubMed ID: 22446878 [TBL] [Abstract][Full Text] [Related]
10. Parvalbumin-expressing inhibitory interneurons in auditory cortex are well-tuned for frequency. Moore AK; Wehr M J Neurosci; 2013 Aug; 33(34):13713-23. PubMed ID: 23966693 [TBL] [Abstract][Full Text] [Related]
11. Synaptic Mechanisms of Tight Spike Synchrony at Gamma Frequency in Cerebral Cortex. Salkoff DB; Zagha E; Yüzgeç Ö; McCormick DA J Neurosci; 2015 Jul; 35(28):10236-51. PubMed ID: 26180200 [TBL] [Abstract][Full Text] [Related]
13. Parvalbumin-Positive Inhibitory Interneurons Oppose Propagation But Favor Generation of Focal Epileptiform Activity. Sessolo M; Marcon I; Bovetti S; Losi G; Cammarota M; Ratto GM; Fellin T; Carmignoto G J Neurosci; 2015 Jul; 35(26):9544-57. PubMed ID: 26134638 [TBL] [Abstract][Full Text] [Related]
14. Inhibitory Gating of Basolateral Amygdala Inputs to the Prefrontal Cortex. McGarry LM; Carter AG J Neurosci; 2016 Sep; 36(36):9391-406. PubMed ID: 27605614 [TBL] [Abstract][Full Text] [Related]
15. Overexpression of Dyrk1A, a Down Syndrome Candidate, Decreases Excitability and Impairs Gamma Oscillations in the Prefrontal Cortex. Ruiz-Mejias M; Martinez de Lagran M; Mattia M; Castano-Prat P; Perez-Mendez L; Ciria-Suarez L; Gener T; Sancristobal B; García-Ojalvo J; Gruart A; Delgado-García JM; Sanchez-Vives MV; Dierssen M J Neurosci; 2016 Mar; 36(13):3648-59. PubMed ID: 27030752 [TBL] [Abstract][Full Text] [Related]
16. Cortical gamma band synchronization through somatostatin interneurons. Veit J; Hakim R; Jadi MP; Sejnowski TJ; Adesnik H Nat Neurosci; 2017 Jul; 20(7):951-959. PubMed ID: 28481348 [TBL] [Abstract][Full Text] [Related]
17. Differential Receptive Field Properties of Parvalbumin and Somatostatin Inhibitory Neurons in Mouse Auditory Cortex. Li LY; Xiong XR; Ibrahim LA; Yuan W; Tao HW; Zhang LI Cereb Cortex; 2015 Jul; 25(7):1782-91. PubMed ID: 24425250 [TBL] [Abstract][Full Text] [Related]
18. Immunochemical characterization of inhibitory mouse cortical neurons: three chemically distinct classes of inhibitory cells. Xu X; Roby KD; Callaway EM J Comp Neurol; 2010 Feb; 518(3):389-404. PubMed ID: 19950390 [TBL] [Abstract][Full Text] [Related]
19. Control of response reliability by parvalbumin-expressing interneurons in visual cortex. Zhu Y; Qiao W; Liu K; Zhong H; Yao H Nat Commun; 2015 Apr; 6():6802. PubMed ID: 25869033 [TBL] [Abstract][Full Text] [Related]
20. Parvalbumin-expressing interneurons can act solo while somatostatin-expressing interneurons act in chorus in most cases on cortical pyramidal cells. Safari MS; Mirnajafi-Zadeh J; Hioki H; Tsumoto T Sci Rep; 2017 Oct; 7(1):12764. PubMed ID: 28986578 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]