These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 29268175)

  • 21. Selenite Adsorption and Reduction via Iron(II) Impregnated Activated Carbon Produced from the Phosphoric Acid Activation of Construction Waste Wood.
    Strong OKL; France HE; Scotland K; Wright K; Vreugdenhil AJ
    Arch Environ Contam Toxicol; 2023 Nov; 85(4):485-497. PubMed ID: 37816969
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fabrication of Stabilized Fe⁻Mn Binary Oxide Nanoparticles: Effective Adsorption of 17β-Estradiol and Influencing Factors.
    Ning Q; Yin Z; Liu Y; Tan X; Zeng G; Jiang L; Liu S; Tian S; Liu N; Wang X
    Int J Environ Res Public Health; 2018 Oct; 15(10):. PubMed ID: 30314268
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sorption kinetic study of selenite and selenate onto a high and low pressure aged iron oxide nanomaterial.
    Gonzalez CM; Hernandez J; Peralta-Videa JR; Botez CE; Parsons JG; Gardea-Torresdey JL
    J Hazard Mater; 2012 Apr; 211-212():138-45. PubMed ID: 21907486
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Adsorption/bioadsorption of phthalic acid, an organic micropollutant present in landfill leachates, on activated carbons.
    Méndez-Díaz JD; Abdel daiem MM; Rivera-Utrilla J; Sánchez-Polo M; Bautista-Toledo I
    J Colloid Interface Sci; 2012 Mar; 369(1):358-65. PubMed ID: 22197057
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Reductive Removal of Selenate in Water Using Stabilized Zero-Valent Iron Nanoparticles.
    Liu H; Cai Z; Zhao X; Zhao D; Qian T; Bozack M; Zhang M
    Water Environ Res; 2016 Aug; 88(8):694-703. PubMed ID: 27456140
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mechanism analysis of selenium (VI) immobilization using alkaline-earth metal oxides and ferrous salt.
    Tian Q; Guo B; Chuaicham C; Sasaki K
    Chemosphere; 2020 Jun; 248():126123. PubMed ID: 32059334
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Preparation and evaluation of Fe-loaded activated carbon for enrichment of selenium for analytical and environmental purposes.
    Dobrowolski R; Otto M
    Chemosphere; 2013 Jan; 90(2):683-90. PubMed ID: 23079163
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Arsenic removal in aqueous solution by a novel Fe-Mn modified biochar composite: Characterization and mechanism.
    Lin L; Qiu W; Wang D; Huang Q; Song Z; Chau HW
    Ecotoxicol Environ Saf; 2017 Oct; 144():514-521. PubMed ID: 28675865
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Removal of bisphenol A by Fe-impregnated activated carbons.
    Arampatzidou A; Voutsa D; Deliyanni E
    Environ Sci Pollut Res Int; 2018 Sep; 25(26):25869-25879. PubMed ID: 29959743
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Iron impregnated activated carbon as an efficient adsorbent for the removal of methylene blue: regeneration and kinetics studies.
    Shah I; Adnan R; Wan Ngah WS; Mohamed N
    PLoS One; 2015; 10(4):e0122603. PubMed ID: 25849291
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sorption and speciation of selenium in boreal forest soil.
    Söderlund M; Virkanen J; Holgersson S; Lehto J
    J Environ Radioact; 2016 Nov; 164():220-231. PubMed ID: 27521902
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Iron optimization for Fenton-driven oxidation of MTBE-spent granular activated carbon.
    Huling SG; Jones PK; Lee TR
    Environ Sci Technol; 2007 Jun; 41(11):4090-6. PubMed ID: 17612195
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fe-Mn bi-metallic oxides loaded on granular activated carbon to enhance dye removal by catalytic ozonation.
    Tang S; Yuan D; Zhang Q; Liu Y; Zhang Q; Liu Z; Huang H
    Environ Sci Pollut Res Int; 2016 Sep; 23(18):18800-8. PubMed ID: 27316651
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparative study of arsenic removal by iron using electrocoagulation and chemical coagulation.
    Lakshmanan D; Clifford DA; Samanta G
    Water Res; 2010 Nov; 44(19):5641-52. PubMed ID: 20605038
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Investigation of the removal mechanism of Cr(VI) in groundwater using activated carbon and cast iron combined system.
    Huang D; Wang G; Li Z; Kang F; Liu F
    Environ Sci Pollut Res Int; 2017 Aug; 24(22):18341-18354. PubMed ID: 28639020
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Removing arsenic from water by coprecipitation with iron: Effect of arsenic and iron concentrations and adsorbent incorporation.
    Nur T; Loganathan P; Ahmed MB; Johir MAH; Nguyen TV; Vigneswaran S
    Chemosphere; 2019 Jul; 226():431-438. PubMed ID: 30951937
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Chemical states in XPS and Raman analysis during removal of Cr(VI) from contaminated water by mixed maghemite-magnetite nanoparticles.
    Chowdhury SR; Yanful EK; Pratt AR
    J Hazard Mater; 2012 Oct; 235-236():246-56. PubMed ID: 22902142
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Microbial selenate sorption and reduction in nutrient limited systems.
    Kenward PA; Fowle DA; Yee N
    Environ Sci Technol; 2006 Jun; 40(12):3782-6. PubMed ID: 16830542
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Towards a selective adsorbent for arsenate and selenite in the presence of phosphate: Assessment of adsorption efficiency, mechanism, and binary separation factors of the chitosan-copper complex.
    Yamani JS; Lounsbury AW; Zimmerman JB
    Water Res; 2016 Jan; 88():889-896. PubMed ID: 26613182
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Zero-valent iron for the abatement of arsenate and selenate from flowback water of hydraulic fracturing.
    Sun Y; Chen SS; Tsang DCW; Graham NJD; Ok YS; Feng Y; Li XD
    Chemosphere; 2017 Jan; 167():163-170. PubMed ID: 27718428
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.