These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
80 related articles for article (PubMed ID: 29268219)
1. Spatial exposure-hazard and landscape models for assessing the impact of GM crops on non-target organisms. Leclerc M; Walker E; Messéan A; Soubeyrand S Sci Total Environ; 2018 May; 624():470-479. PubMed ID: 29268219 [TBL] [Abstract][Full Text] [Related]
2. Modelling and estimating pollen movement in oilseed rape (Brassica napus) at the landscape scale using genetic markers. Devaux C; Lavigne C; Austerlitz F; Klein EK Mol Ecol; 2007 Feb; 16(3):487-99. PubMed ID: 17257108 [TBL] [Abstract][Full Text] [Related]
3. Spatial distribution of Aglais urticae (L.) and its host plant Urtica dioica (L.) in an agricultural landscape: implications for Bt maize risk assessment and post-market monitoring. Gathmann A; Wirooks L; Eckert J; Schuphan I Environ Biosafety Res; 2006; 5(1):27-36. PubMed ID: 16978572 [TBL] [Abstract][Full Text] [Related]
4. A Spatio-Temporal Exposure-Hazard Model for Assessing Biological Risk and Impact. Walker E; Leclerc M; Rey JF; Beaudouin R; Soubeyrand S; Messéan A Risk Anal; 2019 Jan; 39(1):54-70. PubMed ID: 29228505 [TBL] [Abstract][Full Text] [Related]
5. Effect of Bt-176 maize pollen on first instar larvae of the Peacock butterfly (Inachis io) (Lepidoptera; Nymphalidae). Felke M; Langenbruch GA; Feiertag S; Kassa A Environ Biosafety Res; 2010; 9(1):5-12. PubMed ID: 21122482 [TBL] [Abstract][Full Text] [Related]
6. An ecological risk assessment of Cry1F maize pollen impact to pale grass blue butterfly. Wolt JD; Conlan CA; Majima K Environ Biosafety Res; 2005; 4(4):243-51. PubMed ID: 16827552 [TBL] [Abstract][Full Text] [Related]
7. Risk assessment of Bt crops on the non-target plant-associated insects and soil organisms. Yaqoob A; Shahid AA; Samiullah TR; Rao AQ; Khan MA; Tahir S; Mirza SA; Husnain T J Sci Food Agric; 2016 Jun; 96(8):2613-9. PubMed ID: 26857894 [TBL] [Abstract][Full Text] [Related]
9. Genetically engineered plants, endangered species, and risk: a temporal and spatial exposure assessment for Karner blue butterfly larvae and Bt maize pollen. Peterson RK; Meyer SJ; Wolf AT; Wolt JD; Davis PM Risk Anal; 2006 Jun; 26(3):845-58. PubMed ID: 16834638 [TBL] [Abstract][Full Text] [Related]
10. Response to Kruse-Plass et al. (2017) regarding the risk to non-target lepidopteran larvae exposed to pollen from one or more of three Bt maize events (MON810, Bt11 and 1507). Perry JN; Barberi P; Bartsch D; Birch ANE; Gathmann A; Kiss J; Manachini B; Nuti M; Rauschen S; Schiemann J; Schuppener M; Sweet J; Tebbe CC; Veronesi F Environ Sci Eur; 2017; 29(1):21. PubMed ID: 28546900 [TBL] [Abstract][Full Text] [Related]
11. Meteorological input data requirements to predict cross-pollination of GMO maize with Lagrangian approaches. Lipsius K; Wilhelm R; Richter O; Schmalstieg KJ; Schiemann J Environ Biosafety Res; 2006; 5(3):151-68. PubMed ID: 17445511 [TBL] [Abstract][Full Text] [Related]
12. Safety and nutritional assessment of GM plants and derived food and feed: the role of animal feeding trials. EFSA GMO Panel Working Group on Animal Feeding Trials Food Chem Toxicol; 2008 Mar; 46 Suppl 1():S2-70. PubMed ID: 18328408 [TBL] [Abstract][Full Text] [Related]
13. Reply to the EFSA (2016) on the relevance of recent publications (Hofmann et al. 2014, 2016) on environmental risk assessment and management of Bt-maize events (MON810, Bt11 and 1507). Kruse-Plass M; Hofmann F; Kuhn U; Otto M; Schlechtriemen U; Schröder B; Vögel R; Wosniok W Environ Sci Eur; 2017; 29(1):12. PubMed ID: 28331779 [TBL] [Abstract][Full Text] [Related]
14. [Literature review of the dispersal of transgenes from genetically modified maize]. Ricroch A; Bergé JB; Messéan A C R Biol; 2009 Oct; 332(10):861-75. PubMed ID: 19819407 [TBL] [Abstract][Full Text] [Related]
15. Pollen dispersal in spatially aggregated populations. Robledo-Arnuncio JJ; Austerlitz F Am Nat; 2006 Oct; 168(4):500-11. PubMed ID: 17004221 [TBL] [Abstract][Full Text] [Related]
16. Cross-fertilization between genetically modified and non-genetically modified maize crops in Uruguay. Galeano P; Debat CM; Ruibal F; Fraguas LF; Galván GA Environ Biosafety Res; 2010; 9(3):147-54. PubMed ID: 21975255 [TBL] [Abstract][Full Text] [Related]
17. Detection of airborne genetically modified maize pollen by real-time PCR. Folloni S; Kagkli DM; Rajcevic B; Guimarães NC; Van Droogenbroeck B; Valicente FH; Van den Eede G; Van den Bulcke M Mol Ecol Resour; 2012 Sep; 12(5):810-21. PubMed ID: 22805239 [TBL] [Abstract][Full Text] [Related]
18. Assembling spatially explicit landscape models of pollen and spore dispersal by wind for risk assessment. Shaw MW; Harwood TD; Wilkinson MJ; Elliott L Proc Biol Sci; 2006 Jul; 273(1594):1705-13. PubMed ID: 16769644 [TBL] [Abstract][Full Text] [Related]
19. Long distance pollen-mediated gene flow at a landscape level: the weed beet as a case study. Fénart S; Austerlitz F; Cuguen J; Arnaud JF Mol Ecol; 2007 Sep; 16(18):3801-13. PubMed ID: 17850547 [TBL] [Abstract][Full Text] [Related]
20. Modeling gene flow distribution within conventional fields and development of a simplified sampling method to quantify adventitious GM contents in maize. Melé E; Nadal A; Messeguer J; Melé-Messeguer M; Palaudelmàs M; Peñas G; Piferrer X; Capellades G; Serra J; Pla M Sci Rep; 2015 Nov; 5():17106. PubMed ID: 26596213 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]