BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

51 related articles for article (PubMed ID: 29268220)

  • 1. Improving representation of riparian vegetation shading in a regional stream temperature model using LiDAR data.
    Loicq P; Moatar F; Jullian Y; Dugdale SJ; Hannah DM
    Sci Total Environ; 2018 May; 624():480-490. PubMed ID: 29268220
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling instream temperature from solar insolation under varying timber harvesting intensities using RPAS laser scanning.
    Stackhouse LA; Coops NC; Kuiper SD; Hinch SG; White JC; Tompalski P; Nonis A; Gergel SE
    Sci Total Environ; 2024 Feb; 912():169459. PubMed ID: 38123099
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluating the integrity of forested riparian buffers over a large area using LiDAR data and Google Earth Engine.
    Zurqani HA; Post CJ; Mikhailova EA; Cope MP; Allen JS; Lytle BA
    Sci Rep; 2020 Aug; 10(1):14096. PubMed ID: 32839474
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of river channel planar complexity on riparian vegetation-river flow relationships in arid environments.
    Zhang Y
    Sci Total Environ; 2024 Feb; 912():168988. PubMed ID: 38040378
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of multi-decadal land use, irrigation practices and climate on riparian corridors across the Upper Missouri River headwaters basin, Montana.
    Vanderhoof MK; Christensen JR; Alexander LC
    Hydrol Earth Syst Sci; 2019 Oct; 23(10):4269-4292. PubMed ID: 33354099
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dam inundation duration as a dominant constraint on riparian vegetation recovery.
    Jiang W; Pan H; Yang N; Xiao H
    Sci Total Environ; 2023 Dec; 904():166427. PubMed ID: 37619724
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrating thermal infrared stream temperature imagery and spatial stream network models to understand natural spatial thermal variability in streams.
    Fuller MR; Ebersole JL; Detenbeck NE; Labiosa R; Leinenbach P; Torgersen CE
    J Therm Biol; 2021 Aug; 100():103028. PubMed ID: 34503775
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving distribution models of riparian vegetation with mobile laser scanning and hydraulic modelling.
    Nylén T; Kasvi E; Salmela J; Kaartinen H; Kukko A; Jaakkola A; Hyyppä J; Alho P
    PLoS One; 2019; 14(12):e0225936. PubMed ID: 31805122
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional Diversity of Riparian Woody Vegetation Is Less Affected by River Regulation in the Mediterranean Than Boreal Region.
    Lozanovska I; Bejarano MD; Martins MJ; Nilsson C; Ferreira MT; Aguiar FC
    Front Plant Sci; 2020; 11():857. PubMed ID: 32670322
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparing likely effectiveness of urban Nature-based Solutions worldwide: The example of riparian tree planting and water quality.
    Hutchins M; Qu Y; Seifert-Dähnn I; Levin G
    J Environ Manage; 2024 Feb; 351():119950. PubMed ID: 38150927
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Integrated Methodology to Study Riparian Vegetation Dynamics: From Field Data to Impact Modeling.
    Latella M; Bertagni MB; Vezza P; Camporeale C
    J Adv Model Earth Syst; 2020 Aug; 12(8):e2020MS002094. PubMed ID: 32999706
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Delineation of riparian areas based on the application of two-dimension hydraulic modelling.
    Duo L; Castellet EB; Juny MS; Ramos MS
    Sci Total Environ; 2024 Apr; 920():170809. PubMed ID: 38336048
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Channel morphological change monitoring using high-resolution LiDAR-derived DEM and multi-temporal imageries.
    Andualem TG; Peters S; Hewa GA; Myers BR; Boland J; Pezzaniti D
    Sci Total Environ; 2024 Apr; 921():171104. PubMed ID: 38401728
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial and Temporal Variability in Stream Thermal Regime Drivers for Three River Networks During the Summer Growing Season.
    Fuller MR; Detenbeck NE; Leinenbach P; Labiosa R; Isaak D
    J Am Water Resour Assoc; 2024 Feb; 60(1):57-78. PubMed ID: 38377341
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling the spatial and temporal dynamics of riparian vegetation induced by river flow fluctuation.
    You X; Liu J
    Ecol Evol; 2018 Apr; 8(7):3648-3659. PubMed ID: 29686846
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Continuous Dissolved Oxygen Measurements and Modelling Metabolism in Peatland Streams.
    Dick JJ; Soulsby C; Birkel C; Malcolm I; Tetzlaff D
    PLoS One; 2016; 11(8):e0161363. PubMed ID: 27556278
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Long-term patterns and changes of unglaciated High Arctic stream thermal regime.
    Majerska M; Osuch M; Wawrzyniak T
    Sci Total Environ; 2024 May; 923():171298. PubMed ID: 38431174
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vegetation enhances curvature-driven dynamics in meandering rivers.
    Finotello A; Ielpi A; Lapôtre MGA; Lazarus ED; Ghinassi M; Carniello L; Favaro S; Tognin D; D'Alpaos A
    Nat Commun; 2024 Mar; 15(1):1968. PubMed ID: 38438390
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Emotionality in Transboundary Water: A Case Study of Helmand River.
    Loodin N
    Environ Manage; 2024 Jun; ():. PubMed ID: 38874814
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of adaptation measures to extreme heat throughout medium and high temperature periods, case study at the Osaka expo site.
    Takebayashi H; Maeda N
    Sci Rep; 2024 Mar; 14(1):5914. PubMed ID: 38467702
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.