BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 29268681)

  • 1. Utilization of Proteins and Peptides to Create Organic-Hydroxyapatite Hybrids.
    Iijima K; Hashizume M
    Protein Pept Lett; 2018; 25(1):25-33. PubMed ID: 29268681
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolutionary screening of collagen-like peptides that nucleate hydroxyapatite crystals.
    Chung WJ; Kwon KY; Song J; Lee SW
    Langmuir; 2011 Jun; 27(12):7620-8. PubMed ID: 21291244
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Uniaxial Hydroxyapatite Growth on a Self-Assembled Protein Scaffold.
    Danesi AL; Athanasiadou D; Mansouri A; Phen A; Neshatian M; Holcroft J; Bonde J; Ganss B; Carneiro KMM
    Int J Mol Sci; 2021 Nov; 22(22):. PubMed ID: 34830225
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hybrid materials for bone tissue engineering from biomimetic growth of hydroxiapatite on cellulose nanowhiskers.
    Fragal EH; Cellet TSP; Fragal VH; Companhoni MVP; Ueda-Nakamura T; Muniz EC; Silva R; Rubira AF
    Carbohydr Polym; 2016 Nov; 152():734-746. PubMed ID: 27516325
    [TBL] [Abstract][Full Text] [Related]  

  • 5. "Tree to Bone": Lignin/Polycaprolactone Nanofibers for Hydroxyapatite Biomineralization.
    Wang D; Jang J; Kim K; Kim J; Park CB
    Biomacromolecules; 2019 Jul; 20(7):2684-2693. PubMed ID: 31117353
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multilevel hierarchically ordered artificial biomineral.
    Liu X; Lin K; Wu C; Wang Y; Zou Z; Chang J
    Small; 2014 Jan; 10(1):152-9. PubMed ID: 23847156
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of nanoscale architecture in supramolecular templating of biomimetic hydroxyapatite mineralization.
    Newcomb CJ; Bitton R; Velichko YS; Snead ML; Stupp SI
    Small; 2012 Jul; 8(14):2195-202, 2194. PubMed ID: 22570174
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation of collagen/hydroxyapatite/alendronate hybrid hydrogels as potential scaffolds for bone regeneration.
    Ma X; He Z; Han F; Zhong Z; Chen L; Li B
    Colloids Surf B Biointerfaces; 2016 Jul; 143():81-87. PubMed ID: 26998869
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Peptides for Silica Precipitation: Amino Acid Sequences for Directing Mineralization.
    Ozaki M; Sakashita S; Hamada Y; Usui K
    Protein Pept Lett; 2018; 25(1):15-24. PubMed ID: 29237367
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regeneration of tooth-like hydroxyapatite depended on amelogenin functional section monolayer: a new approach for tooth repair.
    Tian K; Peng M; Ren X; Liao C; Fei W
    Med Hypotheses; 2012 Aug; 79(2):143-6. PubMed ID: 22564781
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Osteoinduction and proliferation of bone-marrow stromal cells in three-dimensional poly (ε-caprolactone)/ hydroxyapatite/collagen scaffolds.
    Wang T; Yang X; Qi X; Jiang C
    J Transl Med; 2015 May; 13():152. PubMed ID: 25952675
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of surface carboxylic acid groups of cerasomes, morphologically stable vesicles having a silica surface, on biomimetic deposition of hydroxyapatite in body fluid conditions.
    Hashizume M; Horii H; Kikuchi J; Kamitakahara M; Ohtsuki C; Tanihara M
    J Mater Sci Mater Med; 2010 Jan; 21(1):11-9. PubMed ID: 19634003
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomimetic fabrication of a three-level hierarchical calcium phosphate/collagen/hydroxyapatite scaffold for bone tissue engineering.
    Zhou C; Ye X; Fan Y; Ma L; Tan Y; Qing F; Zhang X
    Biofabrication; 2014 Sep; 6(3):035013. PubMed ID: 24873777
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanoscale hydroxyapatite particles for bone tissue engineering.
    Zhou H; Lee J
    Acta Biomater; 2011 Jul; 7(7):2769-81. PubMed ID: 21440094
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In situ X-ray scattering evaluation of heat-induced ultrastructural changes in dental tissues and synthetic hydroxyapatite.
    Sui T; Sandholzer MA; Lunt AJ; Baimpas N; Smith A; Landini G; Korsunsky AM
    J R Soc Interface; 2014 Jun; 11(95):20130928. PubMed ID: 24718447
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sequence-Defined Energetic Shifts Control the Disassembly Kinetics and Microstructure of Amelogenin Adsorbed onto Hydroxyapatite (100).
    Tao J; Buchko GW; Shaw WJ; De Yoreo JJ; Tarasevich BJ
    Langmuir; 2015 Sep; 31(38):10451-60. PubMed ID: 26381243
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oriented crystallization of hydroxyapatite by the biomimetic amelogenin nanospheres from self-assemblies of amphiphilic dendrons.
    Yang S; He H; Wang L; Jia X; Feng H
    Chem Commun (Camb); 2011 Sep; 47(36):10100-2. PubMed ID: 21833384
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrospun biomimetic nanocomposite nanofibers of hydroxyapatite/chitosan for bone tissue engineering.
    Zhang Y; Venugopal JR; El-Turki A; Ramakrishna S; Su B; Lim CT
    Biomaterials; 2008 Nov; 29(32):4314-22. PubMed ID: 18715637
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alginate/nanohydroxyapatite scaffolds with designed core/shell structures fabricated by 3D plotting and in situ mineralization for bone tissue engineering.
    Luo Y; Lode A; Wu C; Chang J; Gelinsky M
    ACS Appl Mater Interfaces; 2015 Apr; 7(12):6541-9. PubMed ID: 25761464
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation and in vitro biocompatibility of biomimetic hydroxyapatite coatings on chemically treated carbon substrates.
    Hoppe A; Will J; Detsch R; Boccaccini AR; Greil P
    J Biomed Mater Res A; 2014 Jan; 102(1):193-203. PubMed ID: 23650242
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.