These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 29268707)

  • 41. Physical activity, diet quality, and mortality among sarcopenic older adults.
    Brown JC; Harhay MO; Harhay MN
    Aging Clin Exp Res; 2017 Apr; 29(2):257-263. PubMed ID: 27020695
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Targeted learning in real-world comparative effectiveness research with time-varying interventions.
    Neugebauer R; Schmittdiel JA; van der Laan MJ
    Stat Med; 2014 Jun; 33(14):2480-520. PubMed ID: 24535915
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Midlife Occupational Physical Activity and Risk of Disability Later in Life: National Health and Aging Trends Study.
    Missikpode C; Michael YL; Wallace RB
    J Am Geriatr Soc; 2016 May; 64(5):1120-7. PubMed ID: 27148791
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Marginal structural models and causal inference in epidemiology.
    Robins JM; Hernán MA; Brumback B
    Epidemiology; 2000 Sep; 11(5):550-60. PubMed ID: 10955408
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effect of physical activity on functional performance and knee pain in patients with osteoarthritis : analysis with marginal structural models.
    Mansournia MA; Danaei G; Forouzanfar MH; Mahmoodi M; Jamali M; Mansournia N; Mohammad K
    Epidemiology; 2012 Jul; 23(4):631-40. PubMed ID: 22415107
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Adjustment for time-dependent unmeasured confounders in marginal structural Cox models using validation sample data.
    Burne RM; Abrahamowicz M
    Stat Methods Med Res; 2019 Feb; 28(2):357-371. PubMed ID: 28835193
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Causal inference in survival analysis using longitudinal observational data: Sequential trials and marginal structural models.
    Keogh RH; Gran JM; Seaman SR; Davies G; Vansteelandt S
    Stat Med; 2023 Jun; 42(13):2191-2225. PubMed ID: 37086186
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Are a Healthy Diet and Physical Activity Synergistically Associated with Cognitive Functioning in Older Adults?
    Nijholt W; Jager-Wittenaar H; Visser M; van der Schans CP; Hobbelen JS
    J Nutr Health Aging; 2016; 20(5):525-32. PubMed ID: 27102791
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Structural accelerated failure time models for survival analysis in studies with time-varying treatments.
    Hernán MA; Cole SR; Margolick J; Cohen M; Robins JM
    Pharmacoepidemiol Drug Saf; 2005 Jul; 14(7):477-91. PubMed ID: 15660442
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Associations between healthy lifestyles and health outcomes among older Koreans.
    Lyu J; Lee SH; Kim HY
    Geriatr Gerontol Int; 2016 Jun; 16(6):663-9. PubMed ID: 26044571
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Using timed up and go and usual gait speed to predict incident disability in daily activities among community-dwelling adults aged 65 and older.
    Donoghue OA; Savva GM; Cronin H; Kenny RA; Horgan NF
    Arch Phys Med Rehabil; 2014 Oct; 95(10):1954-61. PubMed ID: 24977931
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Application of Causal Inference Methods in the Analysis of Observational Neurosurgical Data: G-Formula and Marginal Structural Model.
    Kawahara T; Shiba K; Tsuchiya A
    World Neurosurg; 2022 May; 161():310-315. PubMed ID: 35505549
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Physical Activity as a Determinant of Successful Aging over Ten Years.
    Gopinath B; Kifley A; Flood VM; Mitchell P
    Sci Rep; 2018 Jul; 8(1):10522. PubMed ID: 30002462
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Marginal structural models might overcome confounding when analyzing multiple treatment effects in observational studies.
    Suarez D; Haro JM; Novick D; Ochoa S
    J Clin Epidemiol; 2008 Jun; 61(6):525-30. PubMed ID: 18471655
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Simulating from marginal structural models with time-dependent confounding.
    Havercroft WG; Didelez V
    Stat Med; 2012 Dec; 31(30):4190-206. PubMed ID: 22826156
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Examining the Error of Mis-Specifying Nonlinear Confounding Effect With Application on Accelerometer-Measured Physical Activity.
    Lee PH
    Res Q Exerc Sport; 2017 Jun; 88(2):203-208. PubMed ID: 28362223
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Causal models adjusting for time-varying confounding-a systematic review of the literature.
    Clare PJ; Dobbins TA; Mattick RP
    Int J Epidemiol; 2019 Feb; 48(1):254-265. PubMed ID: 30358847
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Development of a neuropsychological battery for the Leukoaraiosis and Disability in the Elderly Study (LADIS): experience and baseline data.
    Madureira S; Verdelho A; Ferro J; Basile AM; Chabriat H; Erkinjuntti T; Fazekas F; Hennerici M; O'brien J; Pantoni L; Salvadori E; Scheltens P; Visser MC; Wahlund LO; Waldemar G; Wallin A; Inzitari D;
    Neuroepidemiology; 2006; 27(2):101-16. PubMed ID: 16943684
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Differences between marginal structural models and conventional models in their exposure effect estimates: a systematic review.
    Suarez D; Borràs R; Basagaña X
    Epidemiology; 2011 Jul; 22(4):586-8. PubMed ID: 21540744
    [TBL] [Abstract][Full Text] [Related]  

  • 60. High-dimensional propensity score algorithm in comparative effectiveness research with time-varying interventions.
    Neugebauer R; Schmittdiel JA; Zhu Z; Rassen JA; Seeger JD; Schneeweiss S
    Stat Med; 2015 Feb; 34(5):753-81. PubMed ID: 25488047
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.