BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 29268739)

  • 1. Nasal gene expression differentiates COPD from controls and overlaps bronchial gene expression.
    Boudewijn IM; Faiz A; Steiling K; van der Wiel E; Telenga ED; Hoonhorst SJM; Ten Hacken NHT; Brandsma CA; Kerstjens HAM; Timens W; Heijink IH; Jonker MR; de Bruin HG; Sebastiaan Vroegop J; Pasma HR; Boersma WG; Wielders P; van den Elshout F; Mansour K; Spira A; Lenburg ME; Guryev V; Postma DS; van den Berge M
    Respir Res; 2017 Dec; 18(1):213. PubMed ID: 29268739
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gene network approach reveals co-expression patterns in nasal and bronchial epithelium.
    Imkamp K; Bernal V; Grzegorzcyk M; Horvatovich P; Vermeulen CJ; Heijink IH; Guryev V; Kerstjens HAM; van den Berge M; Faiz A
    Sci Rep; 2019 Nov; 9(1):15835. PubMed ID: 31676779
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Smoking-induced gene expression changes in the bronchial airway are reflected in nasal and buccal epithelium.
    Sridhar S; Schembri F; Zeskind J; Shah V; Gustafson AM; Steiling K; Liu G; Dumas YM; Zhang X; Brody JS; Lenburg ME; Spira A
    BMC Genomics; 2008 May; 9():259. PubMed ID: 18513428
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A dynamic bronchial airway gene expression signature of chronic obstructive pulmonary disease and lung function impairment.
    Steiling K; van den Berge M; Hijazi K; Florido R; Campbell J; Liu G; Xiao J; Zhang X; Duclos G; Drizik E; Si H; Perdomo C; Dumont C; Coxson HO; Alekseyev YO; Sin D; Pare P; Hogg JC; McWilliams A; Hiemstra PS; Sterk PJ; Timens W; Chang JT; Sebastiani P; O'Connor GT; Bild AH; Postma DS; Lam S; Spira A; Lenburg ME
    Am J Respir Crit Care Med; 2013 May; 187(9):933-42. PubMed ID: 23471465
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inflammatory features of nasal mucosa in smokers with and without COPD.
    Vachier I; Vignola AM; Chiappara G; Bruno A; Meziane H; Godard P; Bousquet J; Chanez P
    Thorax; 2004 Apr; 59(4):303-7. PubMed ID: 15047949
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression of genes involved in oxidative stress responses in airway epithelial cells of smokers with chronic obstructive pulmonary disease.
    Pierrou S; Broberg P; O'Donnell RA; Pawłowski K; Virtala R; Lindqvist E; Richter A; Wilson SJ; Angco G; Möller S; Bergstrand H; Koopmann W; Wieslander E; Strömstedt PE; Holgate ST; Davies DE; Lund J; Djukanovic R
    Am J Respir Crit Care Med; 2007 Mar; 175(6):577-86. PubMed ID: 17158281
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Examination of function and structure of respiratory cilia of adult patients suffering from chronic obstructive pulmonary disease (COPD)--comparison of nasal and bronchial mucosa (pilot of CILIARY STUDY)].
    Koblízek V; Dobesová T; Salajka F; Cermáková E; Tomsová M; Pohnetalová D; Papousek P; Bartos V; Paráková Z; Ruta J; Sedlák V
    Vnitr Lek; 2009 Nov; 55(11):1035-42. PubMed ID: 20017434
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Compartmentalization of anti-oxidant and anti-inflammatory gene expression in current and former smokers with COPD.
    Sidhaye VK; Holbrook JT; Burke A; Sudini KR; Sethi S; Criner GJ; Fahey JW; Berenson CS; Jacobs MR; Thimmulappa R; Wise RA; Biswal S
    Respir Res; 2019 Aug; 20(1):190. PubMed ID: 31429757
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shared Gene Expression Alterations in Nasal and Bronchial Epithelium for Lung Cancer Detection.
    AEGIS Study Team
    J Natl Cancer Inst; 2017 Jul; 109(7):. PubMed ID: 28376173
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MicroRNA Profiling Reveals a Role for MicroRNA-218-5p in the Pathogenesis of Chronic Obstructive Pulmonary Disease.
    Conickx G; Mestdagh P; Avila Cobos F; Verhamme FM; Maes T; Vanaudenaerde BM; Seys LJ; Lahousse L; Kim RY; Hsu AC; Wark PA; Hansbro PM; Joos GF; Vandesompele J; Bracke KR; Brusselle GG
    Am J Respir Crit Care Med; 2017 Jan; 195(1):43-56. PubMed ID: 27409149
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential global gene expression in cystic fibrosis nasal and bronchial epithelium.
    Ogilvie V; Passmore M; Hyndman L; Jones L; Stevenson B; Wilson A; Davidson H; Kitchen RR; Gray RD; Shah P; Alton EW; Davies JC; Porteous DJ; Boyd AC
    Genomics; 2011 Nov; 98(5):327-36. PubMed ID: 21756994
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Similarities and differences between smoking-related gene expression in nasal and bronchial epithelium.
    Zhang X; Sebastiani P; Liu G; Schembri F; Zhang X; Dumas YM; Langer EM; Alekseyev Y; O'Connor GT; Brooks DR; Lenburg ME; Spira A
    Physiol Genomics; 2010 Mar; 41(1):1-8. PubMed ID: 19952278
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nitrosative stress in the bronchial mucosa of severe chronic obstructive pulmonary disease.
    Ricciardolo FL; Caramori G; Ito K; Capelli A; Brun P; Abatangelo G; Papi A; Chung KF; Adcock I; Barnes PJ; Donner CF; Rossi A; Di Stefano A
    J Allergy Clin Immunol; 2005 Nov; 116(5):1028-35. PubMed ID: 16275371
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quercetin improves epithelial regeneration from airway basal cells of COPD patients.
    McCluskey ES; Liu N; Pandey A; Marchetti N; Kelsen SG; Sajjan US
    Respir Res; 2024 Mar; 25(1):120. PubMed ID: 38468259
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential expression of the β2-adrenoreceptor and M3-cholinoreceptor genes in bronchial mucosa of patients with asthma and chronic obstructive pulmonary disease.
    Selivanova PA; Kulikov ES; Kozina OV; Trofimenko IN; Freidin MB; Chernyak BA; Ogorodova LM
    Ann Allergy Asthma Immunol; 2012 Jan; 108(1):39-43. PubMed ID: 22192964
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polymeric immunoglobulin receptor down-regulation in chronic obstructive pulmonary disease. Persistence in the cultured epithelium and role of transforming growth factor-β.
    Gohy ST; Detry BR; Lecocq M; Bouzin C; Weynand BA; Amatngalim GD; Sibille YM; Pilette C
    Am J Respir Crit Care Med; 2014 Sep; 190(5):509-21. PubMed ID: 25078120
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The impact of allergic rhinitis and asthma on human nasal and bronchial epithelial gene expression.
    Wagener AH; Zwinderman AH; Luiten S; Fokkens WJ; Bel EH; Sterk PJ; van Drunen CM
    PLoS One; 2013; 8(11):e80257. PubMed ID: 24282527
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diminished expression of multidrug resistance-associated protein 1 (MRP1) in bronchial epithelium of COPD patients.
    van der Deen M; Marks H; Willemse BW; Postma DS; Müller M; Smit EF; Scheffer GL; Scheper RJ; de Vries EG; Timens W
    Virchows Arch; 2006 Dec; 449(6):682-8. PubMed ID: 17072643
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Epithelial to mesenchymal transition is increased in patients with COPD and induced by cigarette smoke.
    Milara J; Peiró T; Serrano A; Cortijo J
    Thorax; 2013 May; 68(5):410-20. PubMed ID: 23299965
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reduced MBD2 expression enhances airway inflammation in bronchial epithelium in COPD.
    Zeng Z; Li M; Chen J; Li Q; Ning Q; Zhao J; Xu Y; Xie J; Yu J
    Int J Chron Obstruct Pulmon Dis; 2018; 13():703-715. PubMed ID: 29535511
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.