These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 29268952)
1. The dynamic of cellulase activity of fungi inhabiting organic municipal solid waste. Sarsaiya S; Awasthi SK; Awasthi MK; Awasthi AK; Mishra S; Chen J Bioresour Technol; 2018 Mar; 251():411-415. PubMed ID: 29268952 [TBL] [Abstract][Full Text] [Related]
2. Bioprocess potential of Eco-friendly fungal isolates converting organic waste to bioresource. Kumar Awasthi A; Yuan Z; Kumar Awasthi M; Li M; Mishra S; Kumar Pandey A Bioresour Technol; 2022 Feb; 346():126586. PubMed ID: 34929330 [TBL] [Abstract][Full Text] [Related]
3. Evaluation of cellulases produced from four fungi cultured on furfural residues and microcrystalline cellulose. Liu HQ; Feng Y; Zhao DQ; Jiang JX Biodegradation; 2012 Jun; 23(3):465-72. PubMed ID: 22116409 [TBL] [Abstract][Full Text] [Related]
4. Optimization for the production of cellulase enzyme from municipal solid waste residue by two novel cellulolytic fungi. Gautam SP; Bundela PS; Pandey AK; Khan J; Awasthi MK; Sarsaiya S Biotechnol Res Int; 2011 Jan; 2011():810425. PubMed ID: 21350668 [TBL] [Abstract][Full Text] [Related]
5. A preliminary report of indigenous fungal isolates from contaminated municipal solid waste site in India. Awasthi AK; Pandey AK; Khan J Environ Sci Pollut Res Int; 2017 Mar; 24(9):8880-8888. PubMed ID: 28204952 [TBL] [Abstract][Full Text] [Related]
6. The multivariate statistical selection of fungal strains isolated from Neoteredo reynei, with the high hydrolytic potential to deconstruct cellulose. Ferreira NR; de Moura Sarquis MI; Gobira RM; da Silva Souza MG; Santos AS Food Res Int; 2019 Aug; 122():402-410. PubMed ID: 31229094 [TBL] [Abstract][Full Text] [Related]
7. Enhanced cellulase production of the Trichoderma viride mutated by microwave and ultraviolet. Li XH; Yang HJ; Roy B; Park EY; Jiang LJ; Wang D; Miao YG Microbiol Res; 2010 Mar; 165(3):190-8. PubMed ID: 19656667 [TBL] [Abstract][Full Text] [Related]
8. Antifungal activity of endophytic fungi from Cupressaceae against human pathogenic Aspergillus fumigatus and Aspergillus niger. Erfandoust R; Habibipour R; Soltani J J Mycol Med; 2020 Sep; 30(3):100987. PubMed ID: 32499133 [TBL] [Abstract][Full Text] [Related]
9. Isolation of Cellulose Degrading Fungi from Decaying Banana Pseudostem and Legodi LM; La Grange D; van Rensburg ELJ; Ncube I Enzyme Res; 2019; 2019():1390890. PubMed ID: 31428468 [TBL] [Abstract][Full Text] [Related]
10. Diversity of cellulolytic microbes and the biodegradation of municipal solid waste by a potential strain. Gautam SP; Bundela PS; Pandey AK; Jamaluddin ; Awasthi MK; Sarsaiya S Int J Microbiol; 2012; 2012():325907. PubMed ID: 22518141 [TBL] [Abstract][Full Text] [Related]
11. The antimicrobial reagent role on the degradation of model cellulose film. Jausovec D; Angelescu D; Voncina B; Nylander T; Lindman B J Colloid Interface Sci; 2008 Nov; 327(1):75-83. PubMed ID: 18752805 [TBL] [Abstract][Full Text] [Related]
12. Cellulase production from Aspergillus niger MS82: effect of temperature and pH. Sohail M; Siddiqi R; Ahmad A; Khan SA N Biotechnol; 2009 Sep; 25(6):437-41. PubMed ID: 19552887 [TBL] [Abstract][Full Text] [Related]
13. [Mechanisms and regulation of enzymatic hydrolysis of cellulose in filamentous fungi: classical cases and new models]. Gutiérrez-Rojas I; Moreno-Sarmiento N; Montoya D Rev Iberoam Micol; 2015; 32(1):1-12. PubMed ID: 24607657 [TBL] [Abstract][Full Text] [Related]
14. Cellulase production by Trichoderma longi, Aspergillus niger and Saccharomyces cerevisae cultured on waste materials from orange. Omojasola PF; Jilani OP Pak J Biol Sci; 2008 Oct; 11(20):2382-8. PubMed ID: 19137846 [TBL] [Abstract][Full Text] [Related]
15. Degradation of lignocellulosic material and humus formation by fungi. Mishra MM; Singh CP; Kapoor KK; Jain MK Ann Microbiol (Paris); 1979; 130 A(4):481-6. PubMed ID: 507620 [TBL] [Abstract][Full Text] [Related]
16. Simplifying cellulase production by using environmental selection pressures and recycling substrate. Lever M; Hoa G; Cord-Ruwisch R Environ Technol; 2013; 34(1-4):471-5. PubMed ID: 23530361 [TBL] [Abstract][Full Text] [Related]
17. Enhancement of ligninolytic enzymes production and decolourising activity in Leptosphaerulina sp. by co-cultivation with Trichoderma viride and Aspergillus terreus. Copete-Pertuz LS; Alandete-Novoa F; Plácido J; Correa-Londoño GA; Mora-Martínez AL Sci Total Environ; 2019 Jan; 646():1536-1545. PubMed ID: 30235638 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of thermophilic fungal consortium for organic municipal solid waste composting. Awasthi MK; Pandey AK; Khan J; Bundela PS; Wong JW; Selvam A Bioresour Technol; 2014 Sep; 168():214-21. PubMed ID: 24507579 [TBL] [Abstract][Full Text] [Related]
19. [Hydrolysis of cellulose by fungi. 1. Screening of cellulolytic strains]. Roussos S; Raimbault M Ann Microbiol (Paris); 1982; 133(3):455-64. PubMed ID: 6891886 [TBL] [Abstract][Full Text] [Related]
20. Strain improvement for enhanced production of cellulase in Trichoderma viride. Xu F; Wang J; Chen S; Qin W; Yu Z; Zhao H; Xing X; Li H Prikl Biokhim Mikrobiol; 2011; 47(1):61-5. PubMed ID: 21438472 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]