BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

447 related articles for article (PubMed ID: 29269022)

  • 21. Acceleration of Aux/IAA proteolysis is specific for auxin and independent of AXR1.
    Zenser N; Dreher KA; Edwards SR; Callis J
    Plant J; 2003 Aug; 35(3):285-94. PubMed ID: 12887580
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Oligomerization of SCFTIR1 Is Essential for Aux/IAA Degradation and Auxin Signaling in Arabidopsis.
    Dezfulian MH; Jalili E; Roberto DK; Moss BL; Khoo K; Nemhauser JL; Crosby WL
    PLoS Genet; 2016 Sep; 12(9):e1006301. PubMed ID: 27618443
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Variation in auxin sensing guides AUX/IAA transcriptional repressor ubiquitylation and destruction.
    Winkler M; Niemeyer M; Hellmuth A; Janitza P; Christ G; Samodelov SL; Wilde V; Majovsky P; Trujillo M; Zurbriggen MD; Hoehenwarter W; Quint M; Calderón Villalobos LIA
    Nat Commun; 2017 Jun; 8():15706. PubMed ID: 28589936
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enhancement of hypocotyl elongation by LOV KELCH PROTEIN2 production is mediated by auxin and phytochrome-interacting factors in Arabidopsis thaliana.
    Miyazaki Y; Jikumaru Y; Takase T; Saitoh A; Sugitani A; Kamiya Y; Kiyosue T
    Plant Cell Rep; 2016 Feb; 35(2):455-67. PubMed ID: 26601822
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Overexpression of the non-canonical Aux/IAA genes causes auxin-related aberrant phenotypes in Arabidopsis.
    Sato A; Yamamoto KT
    Physiol Plant; 2008 Jun; 133(2):397-405. PubMed ID: 18298415
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Light controls stamen elongation via cryptochromes, phytochromes and COP1 through HY5 and HYH.
    Marzi D; Brunetti P; Mele G; Napoli N; Calò L; Spaziani E; Matsui M; De Panfilis S; Costantino P; Serino G; Cardarelli M
    Plant J; 2020 Jul; 103(1):379-394. PubMed ID: 32142184
    [TBL] [Abstract][Full Text] [Related]  

  • 27. AUXIN-BINDING-PROTEIN1 (ABP1) in phytochrome-B-controlled responses.
    Effendi Y; Jones AM; Scherer GF
    J Exp Bot; 2013 Nov; 64(16):5065-74. PubMed ID: 24052532
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Non-canonical AUX/IAA protein IAA33 competes with canonical AUX/IAA repressor IAA5 to negatively regulate auxin signaling.
    Lv B; Yu Q; Liu J; Wen X; Yan Z; Hu K; Li H; Kong X; Li C; Tian H; De Smet I; Zhang XS; Ding Z
    EMBO J; 2020 Jan; 39(1):e101515. PubMed ID: 31617603
    [TBL] [Abstract][Full Text] [Related]  

  • 29. HYPERSENSITIVE TO RED AND BLUE 1, a ZZ-type zinc finger protein, regulates phytochrome B-mediated red and cryptochrome-mediated blue light responses.
    Kang X; Chong J; Ni M
    Plant Cell; 2005 Mar; 17(3):822-35. PubMed ID: 15705950
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Auxin regulates SCF(TIR1)-dependent degradation of AUX/IAA proteins.
    Gray WM; Kepinski S; Rouse D; Leyser O; Estelle M
    Nature; 2001 Nov; 414(6861):271-6. PubMed ID: 11713520
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The homeodomain-leucine zipper ATHB23, a phytochrome B-interacting protein, is important for phytochrome B-mediated red light signaling.
    Choi H; Jeong S; Kim DS; Na HJ; Ryu JS; Lee SS; Nam HG; Lim PO; Woo HR
    Physiol Plant; 2014 Feb; 150(2):308-20. PubMed ID: 23964902
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Phytochrome B promotes branching in Arabidopsis by suppressing auxin signaling.
    Krishna Reddy S; Finlayson SA
    Plant Physiol; 2014 Mar; 164(3):1542-50. PubMed ID: 24492336
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The IAA1 protein is encoded by AXR5 and is a substrate of SCF(TIR1).
    Yang X; Lee S; So JH; Dharmasiri S; Dharmasiri N; Ge L; Jensen C; Hangarter R; Hobbie L; Estelle M
    Plant J; 2004 Dec; 40(5):772-82. PubMed ID: 15546359
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A combinatorial TIR1/AFB-Aux/IAA co-receptor system for differential sensing of auxin.
    Calderón Villalobos LI; Lee S; De Oliveira C; Ivetac A; Brandt W; Armitage L; Sheard LB; Tan X; Parry G; Mao H; Zheng N; Napier R; Kepinski S; Estelle M
    Nat Chem Biol; 2012 Apr; 8(5):477-85. PubMed ID: 22466420
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Developmental specificity of auxin response by pairs of ARF and Aux/IAA transcriptional regulators.
    Weijers D; Benkova E; Jäger KE; Schlereth A; Hamann T; Kientz M; Wilmoth JC; Reed JW; Jürgens G
    EMBO J; 2005 May; 24(10):1874-85. PubMed ID: 15889151
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Phytochromes and cryptochromes regulate the differential growth of Arabidopsis hypocotyls in both a PGP19-dependent and a PGP19-independent manner.
    Nagashima A; Suzuki G; Uehara Y; Saji K; Furukawa T; Koshiba T; Sekimoto M; Fujioka S; Kuroha T; Kojima M; Sakakibara H; Fujisawa N; Okada K; Sakai T
    Plant J; 2008 Feb; 53(3):516-29. PubMed ID: 18086281
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Strigolactone-regulated hypocotyl elongation is dependent on cryptochrome and phytochrome signaling pathways in Arabidopsis.
    Jia KP; Luo Q; He SB; Lu XD; Yang HQ
    Mol Plant; 2014 Mar; 7(3):528-40. PubMed ID: 24126495
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Arabidopsis F-box protein TIR1 is an auxin receptor.
    Kepinski S; Leyser O
    Nature; 2005 May; 435(7041):446-51. PubMed ID: 15917798
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Arabidopsis cryptochrome-1 restrains lateral roots growth by inhibiting auxin transport.
    Zeng J; Wang Q; Lin J; Deng K; Zhao X; Tang D; Liu X
    J Plant Physiol; 2010 May; 167(8):670-3. PubMed ID: 20133010
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Phytochrome-interacting factor PIF3 integrates phytochrome B and UV-B signaling pathways to regulate gibberellin- and auxin-dependent growth in cucumber hypocotyls.
    Zhao J; Bo K; Pan Y; Li Y; Yu D; Li C; Chang J; Wu S; Wang Z; Zhang X; Gu X; Weng Y
    J Exp Bot; 2023 Aug; 74(15):4520-4539. PubMed ID: 37201922
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.