These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
63 related articles for article (PubMed ID: 29269035)
1. Diversity in membrane composition is associated with variation in thermoregulatory capacity in hymenopterans. Rodríguez E; Weber JM; Darveau CA Comp Biochem Physiol B Biochem Mol Biol; 2018 Oct; 224():115-120. PubMed ID: 29269035 [TBL] [Abstract][Full Text] [Related]
2. Setting the pace of life: membrane composition of flight muscle varies with metabolic rate of hovering orchid bees. Rodríguez E; Weber JM; Pagé B; Roubik DW; Suarez RK; Darveau CA Proc Biol Sci; 2015 Mar; 282(1802):. PubMed ID: 25652831 [TBL] [Abstract][Full Text] [Related]
3. PCB-153 and temperature cause restructuring of goldfish membranes: homeoviscous response to a chemical fluidiser. Gonzalez A; Odjélé A; Weber JM Aquat Toxicol; 2013 Nov; 144-145():11-8. PubMed ID: 24121159 [TBL] [Abstract][Full Text] [Related]
4. The theory of homeoviscous adaptation of membranes applied to deep-sea animals. Macdonald AG; Cossins AR Symp Soc Exp Biol; 1985; 39():301-22. PubMed ID: 3938881 [TBL] [Abstract][Full Text] [Related]
5. Lipids, proteins, and their interplay in the dynamics of temperature-stressed membranes of a cyanobacterium, Synechocystis PCC 6803. Laczkó-Dobos H; Szalontai B Biochemistry; 2009 Oct; 48(42):10120-8. PubMed ID: 19788309 [TBL] [Abstract][Full Text] [Related]
6. Studies on thermal adaptation in Tetrahymena membrane lipids. Modification of positional distribution of phospholipid acyl chains in plasma membranes, mitochondria and microsomes. Maruyama H; Banno Y; Watanabe T; Nozawa Y Biochim Biophys Acta; 1982 May; 711(2):229-44. PubMed ID: 6807352 [TBL] [Abstract][Full Text] [Related]
7. [Comparative analysis of thermoregulation in the nests of certain species of social insects]. Es'kov EK; Toroptsev AI Zh Evol Biokhim Fiziol; 1979; 15(5):500-7. PubMed ID: 506590 [TBL] [Abstract][Full Text] [Related]
8. Effects of temperature on the structure and metabolism of cell membranes in fish. Hazel JR Am J Physiol; 1984 Apr; 246(4 Pt 2):R460-70. PubMed ID: 6372513 [TBL] [Abstract][Full Text] [Related]
9. Homeoviscous Adaptation and the Regulation of Membrane Lipids. Ernst R; Ejsing CS; Antonny B J Mol Biol; 2016 Dec; 428(24 Pt A):4776-4791. PubMed ID: 27534816 [TBL] [Abstract][Full Text] [Related]
10. Temperature adaptation in two bivalve species from different thermal habitats: energetics and remodelling of membrane lipids. Pernet F; Tremblay R; Comeau L; Guderley H J Exp Biol; 2007 Sep; 210(Pt 17):2999-3014. PubMed ID: 17704075 [TBL] [Abstract][Full Text] [Related]
11. Individual variation in thermogenic capacity is correlated with flight muscle size but not cellular metabolic capacity in American goldfinches (Spinus tristis). Swanson DL; Zhang Y; King MO Physiol Biochem Zool; 2013; 86(4):421-31. PubMed ID: 23799836 [TBL] [Abstract][Full Text] [Related]
12. Seasonal changes in the composition of storage and membrane lipids in overwintering larvae of the codling moth, Cydia pomonella. Rozsypal J; Koštál V; Berková P; Zahradníčková H; Simek P J Therm Biol; 2014 Oct; 45():124-33. PubMed ID: 25436961 [TBL] [Abstract][Full Text] [Related]
13. Variation in DNA Methylation Is Not Consistently Reflected by Sociality in Hymenoptera. Glastad KM; Arsenault SV; Vertacnik KL; Geib SM; Kay S; Danforth BN; Rehan SM; Linnen CR; Kocher SD; Hunt BG Genome Biol Evol; 2017 Jun; 9(6):1687-1698. PubMed ID: 28854636 [TBL] [Abstract][Full Text] [Related]
14. Differential temperature acclimatization responses in the membrane phospholipids of Posthodiplostomum minimum and its second intermediate host, Lepomis macrochirus. Welsh D; Clopton RE; Parris L J Parasitol; 2006 Aug; 92(4):764-9. PubMed ID: 16995394 [TBL] [Abstract][Full Text] [Related]
15. Regulation of membrane fatty acid composition by temperature in mutants of Arabidopsis with alterations in membrane lipid composition. Falcone DL; Ogas JP; Somerville CR BMC Plant Biol; 2004 Sep; 4():17. PubMed ID: 15377388 [TBL] [Abstract][Full Text] [Related]
16. [Role of lipids in the functional development of the catecholamine--sensitive adenylate cyclase system of skeletal muscle plasma membranes]. Kreps EM; Pertseva MN; Tiurin VA; Gorbunov NV Dokl Akad Nauk SSSR; 1983; 273(4):1005-9. PubMed ID: 6662016 [No Abstract] [Full Text] [Related]
17. Thermoregulation in winter swimmers and physiological significance of human catecholamine thermogenesis. Vybíral S; Lesná I; Jansky L; Zeman V Exp Physiol; 2000 May; 85(3):321-6. PubMed ID: 10825419 [TBL] [Abstract][Full Text] [Related]
18. Mimicking the natural doping of migrant sandpipers in sedentary quails: effects of dietary n-3 fatty acids on muscle membranes and PPAR expression. Nagahuedi S; Popesku JT; Trudeau VL; Weber JM J Exp Biol; 2009 Apr; 212(Pt 8):1106-14. PubMed ID: 19329744 [TBL] [Abstract][Full Text] [Related]
19. Contribution of shivering and nonshivering thermogenesis to thermogenic capacity for the deer mouse (Peromyscus maniculatus). Van Sant MJ; Hammond KA Physiol Biochem Zool; 2008; 81(5):605-11. PubMed ID: 18729765 [TBL] [Abstract][Full Text] [Related]
20. Membrane lipids and maximum lifespan in clownfish. Almaida-Pagan PF; Lucas-Sanchez A; Martinez-Nicolas A; Terzibasi E; de Lama MAR; Cellerino A; Mendiola P; de Costa J Fish Physiol Biochem; 2022 Feb; 48(1):53-65. PubMed ID: 34862943 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]