These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 29269039)
1. Automatic Detection of Acromegaly From Facial Photographs Using Machine Learning Methods. Kong X; Gong S; Su L; Howard N; Kong Y EBioMedicine; 2018 Jan; 27():94-102. PubMed ID: 29269039 [TBL] [Abstract][Full Text] [Related]
2. Real-time detection of acromegaly from facial images with artificial intelligence. Kizilgul M; Karakis R; Dogan N; Bostan H; Yapici MM; Gul U; Ucan B; Duman E; Duger H; Cakal E; Akin O Eur J Endocrinol; 2023 Jan; 188(1):. PubMed ID: 36747333 [TBL] [Abstract][Full Text] [Related]
3. Constructing an automatic diagnosis and severity-classification model for acromegaly using facial photographs by deep learning. Kong Y; Kong X; He C; Liu C; Wang L; Su L; Gao J; Guo Q; Cheng R J Hematol Oncol; 2020 Jul; 13(1):88. PubMed ID: 32620135 [TBL] [Abstract][Full Text] [Related]
4. Early diagnosis of acromegaly: computers vs clinicians. Miller RE; Learned-Miller EG; Trainer P; Paisley A; Blanz V Clin Endocrinol (Oxf); 2011 Aug; 75(2):226-31. PubMed ID: 21521289 [TBL] [Abstract][Full Text] [Related]
5. Deep-Learning Approach to Automatic Identification of Facial Anomalies in Endocrine Disorders. Wei R; Jiang C; Gao J; Xu P; Zhang D; Sun Z; Liu X; Deng K; Bao X; Sun G; Yao Y; Lu L; Zhu H; Wang R; Feng M Neuroendocrinology; 2020; 110(5):328-337. PubMed ID: 31319415 [TBL] [Abstract][Full Text] [Related]
6. Identifying Facial Features and Predicting Patients of Acromegaly Using Three-Dimensional Imaging Techniques and Machine Learning. Meng T; Guo X; Lian W; Deng K; Gao L; Wang Z; Huang J; Wang X; Long X; Xing B Front Endocrinol (Lausanne); 2020; 11():492. PubMed ID: 32849283 [No Abstract] [Full Text] [Related]
7. Toward an Automatic System for Computer-Aided Assessment in Facial Palsy. Guarin DL; Yunusova Y; Taati B; Dusseldorp JR; Mohan S; Tavares J; van Veen MM; Fortier E; Hadlock TA; Jowett N Facial Plast Surg Aesthet Med; 2020; 22(1):42-49. PubMed ID: 32053425 [No Abstract] [Full Text] [Related]
8. An automatic facial landmarking for children with rare diseases. Hennocq Q; Bongibault T; Bizière M; Delassus O; Douillet M; Cormier-Daire V; Amiel J; Lyonnet S; Marlin S; Rio M; Picard A; Khonsari RH; Garcelon N Am J Med Genet A; 2023 May; 191(5):1210-1221. PubMed ID: 36714960 [TBL] [Abstract][Full Text] [Related]
9. Development and evaluation of a machine learning-based point-of-care screening tool for genetic syndromes in children: a multinational retrospective study. Porras AR; Rosenbaum K; Tor-Diez C; Summar M; Linguraru MG Lancet Digit Health; 2021 Oct; 3(10):e635-e643. PubMed ID: 34481768 [TBL] [Abstract][Full Text] [Related]
10. A novel approach to the detection of acromegaly: accuracy of diagnosis by automatic face classification. Schneider HJ; Kosilek RP; Günther M; Roemmler J; Stalla GK; Sievers C; Reincke M; Schopohl J; Würtz RP J Clin Endocrinol Metab; 2011 Jul; 96(7):2074-80. PubMed ID: 21508144 [TBL] [Abstract][Full Text] [Related]
11. Face Frontalization Using an Appearance-Flow-Based Convolutional Neural Network. Zhang Z; Chen X; Wang B; Hu G; Zuo W; Hancock ER IEEE Trans Image Process; 2019 May; 28(5):2187-2199. PubMed ID: 30507505 [TBL] [Abstract][Full Text] [Related]
12. Acromegaly determination using discriminant analysis of the three-dimensional facial classification in Taiwanese. Wang MH; Lin JD; Chang CN; Chiou WK Neuro Endocrinol Lett; 2017 Aug; 38(4):301-309. PubMed ID: 28871717 [TBL] [Abstract][Full Text] [Related]
13. Diagnostic use of facial image analysis software in endocrine and genetic disorders: review, current results and future perspectives. Kosilek RP; Frohner R; Würtz RP; Berr CM; Schopohl J; Reincke M; Schneider HJ Eur J Endocrinol; 2015 Oct; 173(4):M39-44. PubMed ID: 26162404 [TBL] [Abstract][Full Text] [Related]
15. Automated Down syndrome detection using facial photographs. Zhao Q; Rosenbaum K; Okada K; Zand DJ; Sze R; Summar M; Linguraru MG Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():3670-3. PubMed ID: 24110526 [TBL] [Abstract][Full Text] [Related]
16. A deep facial recognition system using computational intelligent algorithms. Salama AbdELminaam D; Almansori AM; Taha M; Badr E PLoS One; 2020; 15(12):e0242269. PubMed ID: 33270670 [TBL] [Abstract][Full Text] [Related]
17. Identifying Ear Abnormality from 2D Photographs Using Convolutional Neural Networks. Hallac RR; Lee J; Pressler M; Seaward JR; Kane AA Sci Rep; 2019 Dec; 9(1):18198. PubMed ID: 31796839 [TBL] [Abstract][Full Text] [Related]
18. Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs. Gulshan V; Peng L; Coram M; Stumpe MC; Wu D; Narayanaswamy A; Venugopalan S; Widner K; Madams T; Cuadros J; Kim R; Raman R; Nelson PC; Mega JL; Webster DR JAMA; 2016 Dec; 316(22):2402-2410. PubMed ID: 27898976 [TBL] [Abstract][Full Text] [Related]
19. Automatic Multi-Level In-Exhale Segmentation and Enhanced Generalized S-Transform for wheezing detection. Chen H; Yuan X; Li J; Pei Z; Zheng X Comput Methods Programs Biomed; 2019 Sep; 178():163-173. PubMed ID: 31416545 [TBL] [Abstract][Full Text] [Related]
20. Development of a Deep Learning Algorithm for Automatic Diagnosis of Diabetic Retinopathy. Raju M; Pagidimarri V; Barreto R; Kadam A; Kasivajjala V; Aswath A Stud Health Technol Inform; 2017; 245():559-563. PubMed ID: 29295157 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]