These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 29269318)
41. Simultaneous Volumetric Segmentation of Vertebral Bodies and Intervertebral Discs on Fat-Water MR Images. Fallah F; Walter SS; Bamberg F; Yang B IEEE J Biomed Health Inform; 2019 Jul; 23(4):1692-1701. PubMed ID: 30281501 [TBL] [Abstract][Full Text] [Related]
42. Multi-atlas segmentation of the whole hippocampus and subfields using multiple automatically generated templates. Pipitone J; Park MT; Winterburn J; Lett TA; Lerch JP; Pruessner JC; Lepage M; Voineskos AN; Chakravarty MM; Neuroimage; 2014 Nov; 101():494-512. PubMed ID: 24784800 [TBL] [Abstract][Full Text] [Related]
43. Why is the gracilis muscle relatively uninvolved in neuromuscular disorders? Schwartz MS; Swash M; Ryan J Neuromuscul Disord; 1991; 1(5):365-9. PubMed ID: 1822346 [TBL] [Abstract][Full Text] [Related]
44. Validation of volumetric and single-slice MRI adipose analysis using a novel fully automated segmentation method. Addeman BT; Kutty S; Perkins TG; Soliman AS; Wiens CN; McCurdy CM; Beaton MD; Hegele RA; McKenzie CA J Magn Reson Imaging; 2015 Jan; 41(1):233-41. PubMed ID: 24431195 [TBL] [Abstract][Full Text] [Related]
45. A label fusion method using conditional random fields with higher-order potentials: Application to hippocampal segmentation. Platero C; Carmen Tobar M Artif Intell Med; 2015 Jun; 64(2):117-29. PubMed ID: 25982908 [TBL] [Abstract][Full Text] [Related]
46. Segmentation of fat in MRI using a preparatory pair of rectangular RF pulses of opposite direction. Yee S Magn Reson Imaging; 2016 May; 34(4):483-91. PubMed ID: 26612077 [TBL] [Abstract][Full Text] [Related]
47. Relationships between fatty infiltration in the thigh and calf in women with knee osteoarthritis. Davison MJ; Maly MR; Adachi JD; Noseworthy MD; Beattie KA Aging Clin Exp Res; 2017 Apr; 29(2):291-299. PubMed ID: 26964549 [TBL] [Abstract][Full Text] [Related]
48. Atlas-based liver segmentation and hepatic fat-fraction assessment for clinical trials. Yan Z; Zhang S; Tan C; Qin H; Belaroussi B; Yu HJ; Miller C; Metaxas DN Comput Med Imaging Graph; 2015 Apr; 41():80-92. PubMed ID: 24962337 [TBL] [Abstract][Full Text] [Related]
49. Quantitative skeletal muscle ultrasonography in children with suspected neuromuscular disease. Pillen S; Scholten RR; Zwarts MJ; Verrips A Muscle Nerve; 2003 Jun; 27(6):699-705. PubMed ID: 12766981 [TBL] [Abstract][Full Text] [Related]
50. Quantitative analysis of back muscle degeneration in the patients with the degenerative lumbar flat back using a digital image analysis: comparison with the normal controls. Lee JC; Cha JG; Kim Y; Kim YI; Shin BJ Spine (Phila Pa 1976); 2008 Feb; 33(3):318-25. PubMed ID: 18303466 [TBL] [Abstract][Full Text] [Related]
51. Automated segmentation of visceral and subcutaneous (deep and superficial) adipose tissues in normal and overweight men. Sadananthan SA; Prakash B; Leow MK; Khoo CM; Chou H; Venkataraman K; Khoo EY; Lee YS; Gluckman PD; Tai ES; Velan SS J Magn Reson Imaging; 2015 Apr; 41(4):924-34. PubMed ID: 24803305 [TBL] [Abstract][Full Text] [Related]
52. Quantitative muscle MRI study of patients with sporadic inclusion body myositis. Ansari B; Salort-Campana E; Ogier A; Le Troter PhD A; De Sainte Marie B; Guye M; Delmont E; Grapperon AM; Verschueren A; Bendahan D; Attarian S Muscle Nerve; 2020 Apr; 61(4):496-503. PubMed ID: 31953869 [TBL] [Abstract][Full Text] [Related]
53. A combinatorial Bayesian and Dirichlet model for prostate MR image segmentation using probabilistic image features. Li A; Li C; Wang X; Eberl S; Feng D; Fulham M Phys Med Biol; 2016 Aug; 61(16):6085-104. PubMed ID: 27461085 [TBL] [Abstract][Full Text] [Related]
54. Quantitative assessment of fatty infiltration and muscle volume of the rotator cuff muscles using 3-dimensional 2-point Dixon magnetic resonance imaging. Matsumura N; Oguro S; Okuda S; Jinzaki M; Matsumoto M; Nakamura M; Nagura T J Shoulder Elbow Surg; 2017 Oct; 26(10):e309-e318. PubMed ID: 28495576 [TBL] [Abstract][Full Text] [Related]
55. Segmentation of fat and muscle from MR images of the thigh by a possibilistic clustering algorithm. Barra V; Boire JY Comput Methods Programs Biomed; 2002 Jun; 68(3):185-93. PubMed ID: 12074845 [TBL] [Abstract][Full Text] [Related]
56. Fat-corrected T2 measurement as a marker of active muscle disease in inflammatory myopathy. Yao L; Gai N AJR Am J Roentgenol; 2012 May; 198(5):W475-81. PubMed ID: 22528929 [TBL] [Abstract][Full Text] [Related]
57. Quantifying fat and lean muscle in the lower legs of women with knee osteoarthritis using two different MRI systems. Beattie K; Davison MJ; Noseworthy M; Adachi JD; Maly MR Rheumatol Int; 2016 Jun; 36(6):855-62. PubMed ID: 26979605 [TBL] [Abstract][Full Text] [Related]
58. An unsupervised automatic segmentation algorithm for breast tissue classification of dedicated breast computed tomography images. Caballo M; Boone JM; Mann R; Sechopoulos I Med Phys; 2018 Jun; 45(6):2542-2559. PubMed ID: 29676025 [TBL] [Abstract][Full Text] [Related]
59. Segmentation of fascias, fat and muscle from magnetic resonance images in humans: the DISPIMAG software. Mattei JP; Fur YL; Cuge N; Guis S; Cozzone PJ; Bendahan D MAGMA; 2006 Nov; 19(5):275-9. PubMed ID: 17004065 [TBL] [Abstract][Full Text] [Related]
60. The reliability of a segmentation methodology for assessing intramuscular adipose tissue and other soft-tissue compartments of lower leg MRI images. Karampatos S; Papaioannou A; Beattie KA; Maly MR; Chan A; Adachi JD; Pritchard JM MAGMA; 2016 Apr; 29(2):237-44. PubMed ID: 26702939 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]