These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 29269318)

  • 61. Accuracy Validation of an Automated Method for Prostate Segmentation in Magnetic Resonance Imaging.
    Shahedi M; Cool DW; Bauman GS; Bastian-Jordan M; Fenster A; Ward AD
    J Digit Imaging; 2017 Dec; 30(6):782-795. PubMed ID: 28342043
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Prostate MRI segmentation using learned semantic knowledge and graph cuts.
    Mahapatra D; Buhmann JM
    IEEE Trans Biomed Eng; 2014 Mar; 61(3):756-64. PubMed ID: 24235297
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Segmentation and quantification of adipose tissue by magnetic resonance imaging.
    Hu HH; Chen J; Shen W
    MAGMA; 2016 Apr; 29(2):259-76. PubMed ID: 26336839
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Trunk Muscle Size and Composition Assessment in Older Adults with Chronic Low Back Pain: An Intra-Examiner and Inter-Examiner Reliability Study.
    Sions JM; Smith AC; Hicks GE; Elliott JM
    Pain Med; 2016 Aug; 17(8):1436-46. PubMed ID: 26814258
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Superpixel-Based Segmentation for 3D Prostate MR Images.
    Tian Z; Liu L; Zhang Z; Fei B
    IEEE Trans Med Imaging; 2016 Mar; 35(3):791-801. PubMed ID: 26540678
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Quantification of Intra-Muscular Adipose Infiltration in Calf/Thigh MRI Using Fully and Weakly Supervised Semantic Segmentation.
    Amer R; Nassar J; Trabelsi A; Bendahan D; Greenspan H; Ben-Eliezer N
    Bioengineering (Basel); 2022 Jul; 9(7):. PubMed ID: 35877366
    [No Abstract]   [Full Text] [Related]  

  • 67. Automated skeletal tissue quantification in the lower leg using peripheral quantitative computed tomography.
    Makrogiannis S; Boukari F; Ferrucci L
    Physiol Meas; 2018 Apr; 39(3):035011. PubMed ID: 29451497
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Description and assessment of a registration-based approach to include bones for attenuation correction of whole-body PET/MRI.
    Marshall HR; Patrick J; Laidley D; Prato FS; Butler J; Théberge J; Thompson RT; Stodilka RZ
    Med Phys; 2013 Aug; 40(8):082509. PubMed ID: 23927354
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Learning-based 3T brain MRI segmentation with guidance from 7T MRI labeling.
    Deng M; Yu R; Wang L; Shi F; Yap PT; Shen D;
    Med Phys; 2016 Dec; 43(12):6588-6597. PubMed ID: 28054724
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Comparison of unsupervised classification methods for brain tumor segmentation using multi-parametric MRI.
    Sauwen N; Acou M; Van Cauter S; Sima DM; Veraart J; Maes F; Himmelreich U; Achten E; Van Huffel S
    Neuroimage Clin; 2016; 12():753-764. PubMed ID: 27812502
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Validation of a generic approach to muscle water T2 determination at 3T in fat-infiltrated skeletal muscle.
    Azzabou N; Loureiro de Sousa P; Caldas E; Carlier PG
    J Magn Reson Imaging; 2015 Mar; 41(3):645-53. PubMed ID: 24590466
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Comparative performance evaluation of automated segmentation methods of hippocampus from magnetic resonance images of temporal lobe epilepsy patients.
    Hosseini MP; Nazem-Zadeh MR; Pompili D; Jafari-Khouzani K; Elisevich K; Soltanian-Zadeh H
    Med Phys; 2016 Jan; 43(1):538. PubMed ID: 26745947
    [TBL] [Abstract][Full Text] [Related]  

  • 73. A method for the automatic segmentation of brown adipose tissue.
    Bhanu Prakash KN; Srour H; Velan SS; Chuang KH
    MAGMA; 2016 Apr; 29(2):287-99. PubMed ID: 26755063
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Using a phantom to compare MR techniques for determining the ratio of intraabdominal to subcutaneous adipose tissue.
    Donnelly LF; O'Brien KJ; Dardzinski BJ; Poe SA; Bean JA; Holland SK; Daniels SR
    AJR Am J Roentgenol; 2003 Apr; 180(4):993-8. PubMed ID: 12646443
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Kidney segmentation in CT sequences using graph cuts based active contours model and contextual continuity.
    Zhang P; Liang Y; Chang S; Fan H
    Med Phys; 2013 Aug; 40(8):081905. PubMed ID: 23927319
    [TBL] [Abstract][Full Text] [Related]  

  • 76. [Rapid total body fat measurement by magnetic resonance imaging: quantification and topography].
    Vogt FM; Ruehm S; Hunold P; de Greiff A; Nuefer M; Barkhausen J; Ladd SC
    Rofo; 2007 May; 179(5):480-6. PubMed ID: 17377875
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Automatic segmentation of the glenohumeral cartilages from magnetic resonance images.
    Neubert A; Yang Z; Engstrom C; Xia Y; Strudwick MW; Chandra SS; Fripp J; Crozier S
    Med Phys; 2016 Oct; 43(10):5370. PubMed ID: 27782728
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Joint segmentation of bones and muscles using an intensity and histogram-based energy minimization approach.
    Pérez-Carrasco JA; Acha B; Suárez-Mejías C; López-Guerra JL; Serrano C
    Comput Methods Programs Biomed; 2018 Mar; 156():85-95. PubMed ID: 29428079
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Robust water fat separated dual-echo MRI by phase-sensitive reconstruction.
    Romu T; Dahlström N; Leinhard OD; Borga M
    Magn Reson Med; 2017 Sep; 78(3):1208-1216. PubMed ID: 27775180
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Reliability of quantifying the spatial distribution of fatty infiltration in lumbar paravertebral muscles using a new segmentation method for T1-weighted MRI.
    Mhuiris ÁN; Volken T; Elliott JM; Hoggarth M; Samartzis D; Crawford RJ
    BMC Musculoskelet Disord; 2016 May; 17():234. PubMed ID: 27230072
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.