These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

438 related articles for article (PubMed ID: 29269441)

  • 41. Sputum bacterial load and bacterial composition correlate with lung function and are altered by long-term azithromycin treatment in children with HIV-associated chronic lung disease.
    Abotsi RE; Dube FS; Rehman AM; Claassen-Weitz S; Xia Y; Simms V; Mwaikono KS; Gardner-Lubbe S; McHugh G; Ngwira LG; Kwambana-Adams B; Heyderman RS; Odland JØ; Ferrand RA; Nicol MP;
    Microbiome; 2023 Feb; 11(1):29. PubMed ID: 36803868
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Relationship between Respiratory Microbiome and Systemic Inflammatory Markers in COPD: A Pilot Study.
    Casadevall C; Quero S; Millares L; Faner R; Cosío BG; Peces-Barba G; Castro-Acosta A; Montón C; Palou A; Pascual-Guardia S; Agustí A; Gea J; Monsó E; On Behalf Of The Biomepoc Group
    Int J Mol Sci; 2024 Aug; 25(15):. PubMed ID: 39126034
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Patients with chronic obstructive pulmonary disease and chronically colonized with Haemophilus influenzae during stable disease phase have increased airway inflammation.
    Tufvesson E; Bjermer L; Ekberg M
    Int J Chron Obstruct Pulmon Dis; 2015; 10():881-9. PubMed ID: 26005341
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Role of pulmonary microorganisms in the development of chronic obstructive pulmonary disease.
    Liu J; Ran Z; Wang F; Xin C; Xiong B; Song Z
    Crit Rev Microbiol; 2021 Feb; 47(1):1-12. PubMed ID: 33040638
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Bronchial microbiome of severe COPD patients colonised by Pseudomonas aeruginosa.
    Millares L; Ferrari R; Gallego M; Garcia-Nuñez M; Pérez-Brocal V; Espasa M; Pomares X; Monton C; Moya A; Monsó E
    Eur J Clin Microbiol Infect Dis; 2014 Jul; 33(7):1101-11. PubMed ID: 24449346
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Ex-vivo RNA expression analysis of vaccine candidate genes in COPD sputum samples.
    Brettoni C; Muzzi A; Rondini S; Weynants V; Rossi Paccani S
    Respir Res; 2023 Oct; 24(1):243. PubMed ID: 37798723
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Sputum microbiome profiling in COPD: beyond singular pathogen detection.
    Ditz B; Christenson S; Rossen J; Brightling C; Kerstjens HAM; van den Berge M; Faiz A
    Thorax; 2020 Apr; 75(4):338-344. PubMed ID: 31996401
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Neutrophil extracellular traps are associated with disease severity and microbiota diversity in patients with chronic obstructive pulmonary disease.
    Dicker AJ; Crichton ML; Pumphrey EG; Cassidy AJ; Suarez-Cuartin G; Sibila O; Furrie E; Fong CJ; Ibrahim W; Brady G; Einarsson GG; Elborn JS; Schembri S; Marshall SE; Palmer CNA; Chalmers JD
    J Allergy Clin Immunol; 2018 Jan; 141(1):117-127. PubMed ID: 28506850
    [TBL] [Abstract][Full Text] [Related]  

  • 49. High serum granulocyte-colony stimulating factor characterises neutrophilic COPD exacerbations associated with dysbiosis.
    Chakrabarti A; Mar JS; Choy DF; Cao Y; Rathore N; Yang X; Tew GW; Li O; Woodruff PG; Brightling CE; Grimbaldeston M; Christenson SA; Bafadhel M; Rosenberger CM
    ERJ Open Res; 2021 Jul; 7(3):. PubMed ID: 34350278
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Association of sputum microbiome with clinical outcome of initial antibiotic treatment in hospitalized patients with acute exacerbations of COPD.
    Liu H; Zheng D; Lin Y; Liu Z; Liang Z; Su J; Chen R; Zhou H; Wang Z
    Pharmacol Res; 2020 Oct; 160():105095. PubMed ID: 32730904
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Moraxella catarrhalis acquisition, airway inflammation and protease-antiprotease balance in chronic obstructive pulmonary disease.
    Parameswaran GI; Wrona CT; Murphy TF; Sethi S
    BMC Infect Dis; 2009 Nov; 9():178. PubMed ID: 19912665
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The alterations of oral, airway and intestine microbiota in chronic obstructive pulmonary disease: a systematic review and meta-analysis.
    Kou Z; Liu K; Qiao Z; Wang Y; Li Y; Li Y; Yu X; Han W
    Front Immunol; 2024; 15():1407439. PubMed ID: 38779669
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Relationship between the presence of bronchiectasis and acute exacerbation in Thai COPD patients.
    Kawamatawong T; Onnipa J; Suwatanapongched T
    Int J Chron Obstruct Pulmon Dis; 2018; 13():761-769. PubMed ID: 29535516
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Bronchoscopic validation of the significance of sputum purulence in severe exacerbations of chronic obstructive pulmonary disease.
    Soler N; Agustí C; Angrill J; Puig De la Bellacasa J; Torres A
    Thorax; 2007 Jan; 62(1):29-35. PubMed ID: 16928715
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The sputum microbiome associated with different sub-types of AECOPD in a Chinese cohort.
    Wang J; Chai J; Sun L; Zhao J; Chang C
    BMC Infect Dis; 2020 Aug; 20(1):610. PubMed ID: 32811432
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Mucus plugging on computed tomography and the sputum microbiome in patients with asthma, chronic obstructive pulmonary disease, and asthma-COPD overlap.
    Tanabe N; Matsumoto H; Morimoto C; Hayashi Y; Sakamoto R; Oguma T; Nagasaki T; Sunadome H; Sato A; Sato S; Ohashi K; Tsukahara T; Hirai T
    Allergol Int; 2024 Oct; 73(4):515-523. PubMed ID: 39013753
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Variations in fecal microbial profiles of acute exacerbations and stable chronic obstructive pulmonary disease.
    Wu Y; Luo Z; Liu C
    Life Sci; 2021 Jan; 265():118738. PubMed ID: 33181175
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Relevance of lower airway bacterial colonization, airway inflammation, and pulmonary function in the stable stage of chronic obstructive pulmonary disease.
    Zhang M; Li Q; Zhang XY; Ding X; Zhu D; Zhou X
    Eur J Clin Microbiol Infect Dis; 2010 Dec; 29(12):1487-93. PubMed ID: 20725845
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Genetic mannose binding lectin deficiency is associated with airway microbiota diversity and reduced exacerbation frequency in COPD.
    Dicker AJ; Crichton ML; Cassidy AJ; Brady G; Hapca A; Tavendale R; Einarsson GG; Furrie E; Elborn JS; Schembri S; Marshall SE; Palmer CNA; Chalmers JD
    Thorax; 2018 Jun; 73(6):510-518. PubMed ID: 29101284
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Acute exacerbations of chronic obstructive pulmonary disease: identification of biologic clusters and their biomarkers.
    Bafadhel M; McKenna S; Terry S; Mistry V; Reid C; Haldar P; McCormick M; Haldar K; Kebadze T; Duvoix A; Lindblad K; Patel H; Rugman P; Dodson P; Jenkins M; Saunders M; Newbold P; Green RH; Venge P; Lomas DA; Barer MR; Johnston SL; Pavord ID; Brightling CE
    Am J Respir Crit Care Med; 2011 Sep; 184(6):662-71. PubMed ID: 21680942
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.