These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
205 related articles for article (PubMed ID: 29270165)
1. Enhancing the Resolution of Rumen Microbial Classification from Metatranscriptomic Data Using Kraken and Mothur. Neves ALA; Li F; Ghoshal B; McAllister T; Guan LL Front Microbiol; 2017; 8():2445. PubMed ID: 29270165 [TBL] [Abstract][Full Text] [Related]
2. A Comparison of Two DNA Metagenomic Bioinformatic Pipelines While Evaluating the Microbial Diversity in Feces of Tanzanian Small Holder Dairy Cattle. Kibegwa FM; Bett RC; Gachuiri CK; Stomeo F; Mujibi FD Biomed Res Int; 2020; 2020():2348560. PubMed ID: 32382536 [TBL] [Abstract][Full Text] [Related]
3. Metatranscriptomic Profiling Reveals Linkages between the Active Rumen Microbiome and Feed Efficiency in Beef Cattle. Li F; Guan LL Appl Environ Microbiol; 2017 May; 83(9):. PubMed ID: 28235871 [TBL] [Abstract][Full Text] [Related]
4. Comparison of Mothur and QIIME for the Analysis of Rumen Microbiota Composition Based on 16S rRNA Amplicon Sequences. López-García A; Pineda-Quiroga C; Atxaerandio R; Pérez A; Hernández I; García-Rodríguez A; González-Recio O Front Microbiol; 2018; 9():3010. PubMed ID: 30619117 [No Abstract] [Full Text] [Related]
5. Ultrafast and accurate 16S rRNA microbial community analysis using Kraken 2. Lu J; Salzberg SL Microbiome; 2020 Aug; 8(1):124. PubMed ID: 32859275 [TBL] [Abstract][Full Text] [Related]
6. The structure of microbial populations in Nelore GIT reveals inter-dependency of methanogens in feces and rumen. Andrade BGN; Bressani FA; Cuadrat RRC; Tizioto PC; de Oliveira PSN; Mourão GB; Coutinho LL; Reecy JM; Koltes JE; Walsh P; Berndt A; Palhares JCP; Regitano LCA J Anim Sci Biotechnol; 2020; 11():6. PubMed ID: 32123563 [TBL] [Abstract][Full Text] [Related]
7. Taxonomic and functional assessment using metatranscriptomics reveals the effect of Angus cattle on rumen microbial signatures. Neves ALA; Chen Y; Lê Cao KA; Mandal S; Sharpton TJ; McAllister T; Guan LL Animal; 2020 Apr; 14(4):731-744. PubMed ID: 31662129 [TBL] [Abstract][Full Text] [Related]
8. Comparative metagenomic and metatranscriptomic analyses reveal the breed effect on the rumen microbiome and its associations with feed efficiency in beef cattle. Li F; Hitch TCA; Chen Y; Creevey CJ; Guan LL Microbiome; 2019 Jan; 7(1):6. PubMed ID: 30642389 [TBL] [Abstract][Full Text] [Related]
10. Community structure of the metabolically active rumen bacterial and archaeal communities of dairy cows over the transition period. Zhu Z; Noel SJ; Difford GF; Al-Soud WA; Brejnrod A; Sørensen SJ; Lassen J; Løvendahl P; Højberg O PLoS One; 2017; 12(11):e0187858. PubMed ID: 29117259 [TBL] [Abstract][Full Text] [Related]
11. Evaluation of composition and individual variability of rumen microbiota in yaks by 16S rRNA high-throughput sequencing technology. Guo W; Li Y; Wang L; Wang J; Xu Q; Yan T; Xue B Anaerobe; 2015 Aug; 34():74-9. PubMed ID: 25911445 [TBL] [Abstract][Full Text] [Related]
12. Metatranscriptomic analysis of diverse microbial communities reveals core metabolic pathways and microbiome-specific functionality. Jiang Y; Xiong X; Danska J; Parkinson J Microbiome; 2016 Jan; 4():2. PubMed ID: 26757703 [TBL] [Abstract][Full Text] [Related]
13. Taxonomic Assessment of Rumen Microbiota Using Total RNA and Targeted Amplicon Sequencing Approaches. Li F; Henderson G; Sun X; Cox F; Janssen PH; Guan le L Front Microbiol; 2016; 7():987. PubMed ID: 27446027 [TBL] [Abstract][Full Text] [Related]
14. Rumen microbiome from steers differing in feed efficiency. Myer PR; Smith TP; Wells JE; Kuehn LA; Freetly HC PLoS One; 2015; 10(6):e0129174. PubMed ID: 26030887 [TBL] [Abstract][Full Text] [Related]
15. Evaluating the accuracy of amplicon-based microbiome computational pipelines on simulated human gut microbial communities. Golob JL; Margolis E; Hoffman NG; Fredricks DN BMC Bioinformatics; 2017 May; 18(1):283. PubMed ID: 28558684 [TBL] [Abstract][Full Text] [Related]
16. Status of the phylogenetic diversity census of ruminal microbiomes. Kim M; Morrison M; Yu Z FEMS Microbiol Ecol; 2011 Apr; 76(1):49-63. PubMed ID: 21223325 [TBL] [Abstract][Full Text] [Related]
17. Comparisons of bacterial and archaeal communities in the rumen and a dual-flow continuous culture fermentation system using amplicon sequencing. Salfer IJ; Staley C; Johnson HE; Sadowsky MJ; Stern MD J Anim Sci; 2018 Apr; 96(3):1059-1072. PubMed ID: 29529208 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of 16S rRNA amplicon sequencing using two next-generation sequencing technologies for phylogenetic analysis of the rumen bacterial community in steers. Myer PR; Kim M; Freetly HC; Smith TPL J Microbiol Methods; 2016 Aug; 127():132-140. PubMed ID: 27282101 [TBL] [Abstract][Full Text] [Related]
19. Comparison of Bioinformatics Pipelines and Operating Systems for the Analyses of 16S rRNA Gene Amplicon Sequences in Human Fecal Samples. Marizzoni M; Gurry T; Provasi S; Greub G; Lopizzo N; Ribaldi F; Festari C; Mazzelli M; Mombelli E; Salvatore M; Mirabelli P; Franzese M; Soricelli A; Frisoni GB; Cattaneo A Front Microbiol; 2020; 11():1262. PubMed ID: 32636817 [TBL] [Abstract][Full Text] [Related]