These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 2927100)

  • 1. Evaluation of consistency among different electrical impedance indices of relative cerebral blood flow in normal resting individuals.
    Jevning R; Fernando G; Wilson AF
    J Biomed Eng; 1989 Jan; 11(1):53-6. PubMed ID: 2927100
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in the intracranial rheoencephalogram at lower limit of cerebral blood flow autoregulation.
    Bodo M; Pearce FJ; Baranyi L; Armonda RA
    Physiol Meas; 2005 Apr; 26(2):S1-17. PubMed ID: 15798222
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cerebrovascular reactivity: rat studies in rheoencephalography.
    Bodo M; Pearce FJ; Armonda RA
    Physiol Meas; 2004 Dec; 25(6):1371-84. PubMed ID: 15712716
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparison between electrical impedance and strain gauge plethysmography for the study of cerebral blood flow in the newborn.
    Costeloe K; Smyth DP; Murdoch N; Rolfe P; Tizard JP
    Pediatr Res; 1984 Mar; 18(3):290-5. PubMed ID: 6427746
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantification of intracranial contribution to rheoencephalography by a numerical model of the head.
    Pérez JJ; Guijarro E; Barcia JA
    Clin Neurophysiol; 2000 Jul; 111(7):1306-14. PubMed ID: 10880807
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects on regional cerebral blood flow of transcendental meditation.
    Jevning R; Anand R; Biedebach M; Fernando G
    Physiol Behav; 1996 Mar; 59(3):399-402. PubMed ID: 8700938
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrical impedance plethysmography: its use in studying the cerebral circulation of the rabbit.
    Colditz PB; Bartholomew PH; Sinclair JI; Murphy D; Rolfe P; Wilkinson AR
    Med Biol Eng Comput; 1993 Jan; 31(1):39-42. PubMed ID: 8326762
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cerebral blood flow and quantitative rheoencephalography.
    Jacquy J; Dekoninck WJ; Piraux A; Calay R; Bacq J; Levy D; Noel G
    Electroencephalogr Clin Neurophysiol; 1974 Nov; 37(5):507-11. PubMed ID: 4138164
    [No Abstract]   [Full Text] [Related]  

  • 9. To what extent is the bipolar rheoencephalographic signal contaminated by scalp blood flow? A clinical study to quantify its extra and non-extracranial components.
    Perez JJ
    Biomed Eng Online; 2014 Sep; 13():131. PubMed ID: 25192886
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cerebral electrical impedance: do indices derived from it provide information on cerebral blood flow in the neonate?
    Colditz P; Pryds O; Greisen G; Murphy D; Rolfe P; Wilkinson AR
    Scand J Clin Lab Invest; 1988 Nov; 48(7):691-6. PubMed ID: 3201103
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of electrode size on the contributions of intracranial and extracranial blood flow to the cerebral electrical impedance plethysmogram.
    Weindling AM; Murdoch N; Rolfe P
    Med Biol Eng Comput; 1982 Sep; 20(5):545-9. PubMed ID: 7176711
    [No Abstract]   [Full Text] [Related]  

  • 12. [The determination of cerebral hemodynamics in rats by means of tetrapolar impedance rheoencephalography].
    Protsenko VA; Kozinets IIu; Kharchenko VZ
    Patol Fiziol Eksp Ter; 1991; (3):55-6. PubMed ID: 1923622
    [No Abstract]   [Full Text] [Related]  

  • 13. [Noninvasive method of determining the cerebral blood flow circulation rate and its correlations with cardiac minute volume].
    Paleev NR; Kaevitser IM; Agafonov BV
    Kardiologiia; 1980 Jan; 20(1):54-7. PubMed ID: 7354597
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel Noninvasive Method of Cerebrovascular Blood Volume Assessment Using Brain Bioimpedance.
    Tiba MH; McCracken BM; Ansari S; Belle A; Cummings BC; Rajajee V; Patil PG; Alam HB; Ward KR
    J Neurotrauma; 2017 Nov; 34(22):3089-3096. PubMed ID: 28657491
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatiotemporal pattern of the extracranial component of the rheoencephalographic signal.
    Pérez JJ; Guijarro E; Sancho J
    Physiol Meas; 2005 Dec; 26(6):925-38. PubMed ID: 16311442
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Potentials of a noninvasive method for studying volumetric cerebral blood flow in mitral stenosis and following its surgical correction].
    Frantsev VI; Paleev NR; Sumbatov LA; Agafonov BV; Lekhtman AM
    Kardiologiia; 1984 Jun; 24(6):88-90. PubMed ID: 6748499
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of the scalp thickness on the intracranial contribution to rheoencephalography.
    Pérez JJ; Guijarro E; Barcia JA
    Phys Med Biol; 2004 Sep; 49(18):4383-94. PubMed ID: 15509072
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Methods of cerebral blood flow measurements].
    Zderkiewicz E
    Neurol Neurochir Pol; 1981; 15(3):337-43. PubMed ID: 7031497
    [No Abstract]   [Full Text] [Related]  

  • 19. Quantitative noninvasive method to measure cerebral blood flow in newborn infants.
    Leahy FA; Sankaran K; Cates D; MacCallum M; Rigatto H
    Pediatrics; 1979 Sep; 64(3):277-82. PubMed ID: 481969
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regional cerebral blood flow during voluntary movements of the hand. A rheoencephalography study.
    Jacquy J; Piraux A; Jocquet P; Lhoas JP; Noel G
    Neuropsychobiology; 1977; 3(4):240-9. PubMed ID: 593540
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.