These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 29271082)

  • 1. Quantifying River-Groundwater Interactions of New Zealand's Gravel-Bed Rivers: The Wairau Plain.
    Wöhling T; Gosses MJ; Wilson SR; Davidson P
    Ground Water; 2018 Jul; 56(4):647-666. PubMed ID: 29271082
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Eigenmodels to forecast groundwater levels in unconfined river-fed aquifers during flow recession.
    Wöhling T; Burbery L
    Sci Total Environ; 2020 Dec; 747():141220. PubMed ID: 32799021
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of Groundwater Hydraulic Gradient on Bank Storage Metrics.
    Welch C; Harrington GA; Cook PG
    Ground Water; 2015; 53(5):782-93. PubMed ID: 25297950
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of hydrological alterations on river-groundwater exchange and water quality in a semi-arid area: Nueces River, Texas.
    Murgulet D; Murgulet V; Spalt N; Douglas A; Hay RG
    Sci Total Environ; 2016 Dec; 572():595-607. PubMed ID: 27620959
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Filtration and transport of Bacillus subtilis spores and the F-RNA phage MS2 in a coarse alluvial gravel aquifer: implications in the estimation of setback distances.
    Pang L; Close M; Goltz M; Noonan M; Sinton L
    J Contam Hydrol; 2005 Apr; 77(3):165-94. PubMed ID: 15763354
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical modeling of changes in groundwater storage and nitrate load in the unconfined aquifer near a river receiving reclaimed water.
    Jiang R; Han D; Song X; Zheng F
    Environ Sci Pollut Res Int; 2022 May; 29(24):36100-36114. PubMed ID: 35061175
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction of Aquifer and River-Canal Network near Well Field.
    Ghosh NC; Mishra GC; Sandhu CS; Grischek T; Singh VV
    Ground Water; 2015; 53(5):794-805. PubMed ID: 25294130
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new method for estimating recharge to unconfined aquifers using differential river gauging.
    McCallum AM; Andersen MS; Acworth RI
    Ground Water; 2014; 52(2):291-7. PubMed ID: 23550897
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes in Projected Spatial and Seasonal Groundwater Recharge in the Upper Colorado River Basin.
    Tillman FD; Gangopadhyay S; Pruitt T
    Ground Water; 2017 Jul; 55(4):506-518. PubMed ID: 28208211
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Innovative environmental tracer techniques for evaluating sources of spring discharge from a carbonate aquifer bisected by a river.
    Heilweil VM; Sweetkind DS; Gerner SJ
    Ground Water; 2014; 52(1):71-83. PubMed ID: 23425448
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regional water quality patterns in an alluvial aquifer: direct and indirect influences of rivers.
    Baillieux A; Campisi D; Jammet N; Bucher S; Hunkeler D
    J Contam Hydrol; 2014 Nov; 169():123-131. PubMed ID: 25249478
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Project river recovery: restoration of braided gravel-bed river habitat in New Zealand's high country.
    Caruso BS
    Environ Manage; 2006 Jun; 37(6):840-61. PubMed ID: 16508798
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantifying urban river-aquifer fluid exchange processes: a multi-scale problem.
    Ellis PA; Mackay R; Rivett MO
    J Contam Hydrol; 2007 Apr; 91(1-2):58-80. PubMed ID: 17182151
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimating aquifer channel recharge using optical data interpretation.
    Walter GR; Necsoiu M; McGinnis R
    Ground Water; 2012; 50(1):68-76. PubMed ID: 21434908
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unravelling 30 ka recharge history of an intensely exploited multi-tier aquifer system in North West India through isotopic tracers - Implications on deep groundwater sustainability.
    Roy A; Keesari T; Pant D; Rai G; Sinha UK; Mohokar H; Jaryal A; Sharma DA
    Sci Total Environ; 2022 Feb; 807(Pt 2):151401. PubMed ID: 34752874
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Making waves: Pulling the plug-Climate change effects will turn gaining into losing streams with detrimental effects on groundwater quality.
    Uhl A; Hahn HJ; Jäger A; Luftensteiner T; Siemensmeyer T; Döll P; Noack M; Schwenk K; Berkhoff S; Weiler M; Karwautz C; Griebler C
    Water Res; 2022 Jul; 220():118649. PubMed ID: 35635915
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The nitrogen cycle in highly urbanized tropical regions and the effect of river-aquifer interactions: The case of Jakarta and the Ciliwung River.
    Costa D; Burlando P; Priadi C; Shie-Yui L
    J Contam Hydrol; 2016 Sep; 192():87-100. PubMed ID: 27398641
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dam reservoir backwater as a field-scale laboratory of human-induced changes in river biogeomorphology: A review focused on gravel-bed rivers.
    Liro M
    Sci Total Environ; 2019 Feb; 651(Pt 2):2899-2912. PubMed ID: 30463142
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estimation of recharge from floods in disconnected stream-aquifer systems.
    Vázquez-Suñé E; Capino B; Abarca E; Carrera J
    Ground Water; 2007; 45(5):579-89. PubMed ID: 17760584
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using geochemistry to identify and quantify the sources, distribution, and fluxes of baseflow to an intermittent river impacted by climate change: The upper Wimmera River, southeast Australia.
    Zhou Z; Cartwright I
    Sci Total Environ; 2021 Dec; 801():149725. PubMed ID: 34428656
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.