These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 29271168)

  • 1. [Strategies to prevent bacteriophage infection in industrial fermentation].
    Shen J; Xiu Z
    Sheng Wu Gong Cheng Xue Bao; 2017 Dec; 33(12):1901-1912. PubMed ID: 29271168
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bacteriophage-resistant industrial fermentation strains: from the cradle to CRISPR/Cas9.
    Baltz RH
    J Ind Microbiol Biotechnol; 2018 Nov; 45(11):1003-1006. PubMed ID: 30191429
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of a novel lytic bacteriophage from an industrial Escherichia coli fermentation process and elimination of virulence using a heterologous CRISPR-Cas9 system.
    Halter MC; Zahn JA
    J Ind Microbiol Biotechnol; 2018 Mar; 45(3):153-163. PubMed ID: 29411201
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [CRISPR/Cas systems in genome engineering of bacteriophages].
    Liang CJ; Meng FM; Ai YC
    Yi Chuan; 2018 May; 40(5):378-389. PubMed ID: 29785946
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional Analysis of Bacteriophage Immunity through a Type I-E CRISPR-Cas System in Vibrio cholerae and Its Application in Bacteriophage Genome Engineering.
    Box AM; McGuffie MJ; O'Hara BJ; Seed KD
    J Bacteriol; 2016 Feb; 198(3):578-90. PubMed ID: 26598368
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CRISPR-Based Technologies and the Future of Food Science.
    Selle K; Barrangou R
    J Food Sci; 2015 Nov; 80(11):R2367-72. PubMed ID: 26444151
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bacteriophage-host arm race: an update on the mechanism of phage resistance in bacteria and revenge of the phage with the perspective for phage therapy.
    Azam AH; Tanji Y
    Appl Microbiol Biotechnol; 2019 Mar; 103(5):2121-2131. PubMed ID: 30680434
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Anti-CRISPR Story: A Battle for Survival.
    Maxwell KL
    Mol Cell; 2017 Oct; 68(1):8-14. PubMed ID: 28985512
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering Bacteriophages as Versatile Biologics.
    Kilcher S; Loessner MJ
    Trends Microbiol; 2019 Apr; 27(4):355-367. PubMed ID: 30322741
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genomic impact of CRISPR immunization against bacteriophages.
    Barrangou R; Coûté-Monvoisin AC; Stahl B; Chavichvily I; Damange F; Romero DA; Boyaval P; Fremaux C; Horvath P
    Biochem Soc Trans; 2013 Dec; 41(6):1383-91. PubMed ID: 24256225
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CRISPR: new horizons in phage resistance and strain identification.
    Barrangou R; Horvath P
    Annu Rev Food Sci Technol; 2012; 3():143-62. PubMed ID: 22224556
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bacteriophage contamination: is there a simple method to reduce its deleterious effects in laboratory cultures and biotechnological factories?
    Łos M; Czyz A; Sell E; Wegrzyn A; Neubauer P; Wegrzyn G
    J Appl Genet; 2004; 45(1):111-20. PubMed ID: 14960775
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phage Genetic Engineering Using CRISPR⁻Cas Systems.
    Hatoum-Aslan A
    Viruses; 2018 Jun; 10(6):. PubMed ID: 29921752
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phenotypic, fermentation characterization, and resistance mechanism analysis of bacteriophage-resistant mutants of Lactobacillus delbrueckii ssp. bulgaricus isolated from traditional Chinese dairy products.
    Deng K; Fang W; Zheng B; Miao S; Huo G
    J Dairy Sci; 2018 Mar; 101(3):1901-1914. PubMed ID: 29274957
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CRISPR/Cas9 Immune System as a Tool for Genome Engineering.
    Hryhorowicz M; Lipiński D; Zeyland J; Słomski R
    Arch Immunol Ther Exp (Warsz); 2017 Jun; 65(3):233-240. PubMed ID: 27699445
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of CRISPR-Cas systems by mobile genetic elements.
    Sontheimer EJ; Davidson AR
    Curr Opin Microbiol; 2017 Jun; 37():120-127. PubMed ID: 28668720
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Discovery, Mechanisms, and Evolutionary Impact of Anti-CRISPRs.
    Borges AL; Davidson AR; Bondy-Denomy J
    Annu Rev Virol; 2017 Sep; 4(1):37-59. PubMed ID: 28749735
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A bacteriophage model based on CRISPR/Cas immune system in a chemostat.
    Shu M; Fu R; Wang W
    Math Biosci Eng; 2017 Oct/Dec 1; 14(5-6):1361-1377. PubMed ID: 29161865
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CRISPR technologies for bacterial systems: Current achievements and future directions.
    Choi KR; Lee SY
    Biotechnol Adv; 2016 Nov; 34(7):1180-1209. PubMed ID: 27566508
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mathematical modelling of CRISPR-Cas system effects on biofilm formation.
    Ali Q; Wahl LM
    J Biol Dyn; 2017 Aug; 11(sup2):264-284. PubMed ID: 28426329
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.