These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 29271355)

  • 1. White reflection from cuttlefish skin leucophores.
    Hanlon RT; Mäthger LM; Bell GRR; Kuzirian AM; Senft SL
    Bioinspir Biomim; 2018 Mar; 13(3):035002. PubMed ID: 29271355
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cuttlefish skin papilla morphology suggests a muscular hydrostatic function for rapid changeability.
    Allen JJ; Bell GR; Kuzirian AM; Hanlon RT
    J Morphol; 2013 Jun; 274(6):645-56. PubMed ID: 23378271
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An introduction to color-changing systems from the cephalopod protein reflectin.
    Chatterjee A; Norton-Baker B; Bagge LE; Patel P; Gorodetsky AA
    Bioinspir Biomim; 2018 May; 13(4):045001. PubMed ID: 29799434
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical parameters of the tunable Bragg reflectors in squid.
    Ghoshal A; Demartini DG; Eck E; Morse DE
    J R Soc Interface; 2013 Aug; 10(85):20130386. PubMed ID: 23740489
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantification of cuttlefish (Sepia officinalis) camouflage: a study of color and luminance using in situ spectrometry.
    Akkaynak D; Allen JJ; Mäthger LM; Chiao CC; Hanlon RT
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2013 Mar; 199(3):211-25. PubMed ID: 23254307
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental determination of refractive index of condensed reflectin in squid iridocytes.
    Ghoshal A; DeMartini DG; Eck E; Morse DE
    J R Soc Interface; 2014 Jun; 11(95):20140106. PubMed ID: 24694894
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photonic crystal micro-pixelation and additive color mixing in weevil scales.
    Nagi RK; Montanari DE; Bartl MH
    Bioinspir Biomim; 2018 Apr; 13(3):035003. PubMed ID: 29443002
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The scaling effects of substrate texture on camouflage patterning in cuttlefish.
    Chiao CC; Chubb C; Buresch K; Siemann L; Hanlon RT
    Vision Res; 2009 Jun; 49(13):1647-56. PubMed ID: 19362570
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dark scene elements strongly influence cuttlefish camouflage responses in visually cluttered environments.
    Chubb C; Chiao CC; Ulmer K; Buresch K; Birk MA; Hanlon RT
    Vision Res; 2018 Aug; 149():86-101. PubMed ID: 29913248
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Do cephalopods communicate using polarized light reflections from their skin?
    Mäthger LM; Shashar N; Hanlon RT
    J Exp Biol; 2009 Jul; 212(Pt 14):2133-40. PubMed ID: 19561202
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic biophotonics: female squid exhibit sexually dimorphic tunable leucophores and iridocytes.
    DeMartini DG; Ghoshal A; Pandolfi E; Weaver AT; Baum M; Morse DE
    J Exp Biol; 2013 Oct; 216(Pt 19):3733-41. PubMed ID: 24006348
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Uric acid is a major chemical constituent for the whitish coloration in the medaka leucophores.
    Goda M; Miyagi A; Kitamoto T; Kondo M; Hashimoto H
    Pigment Cell Melanoma Res; 2023 Sep; 36(5):416-422. PubMed ID: 37253924
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wavelength-specific forward scattering of light by Bragg-reflective iridocytes in giant clams.
    Ghoshal A; Eck E; Gordon M; Morse DE
    J R Soc Interface; 2016 Jul; 13(120):. PubMed ID: 27383420
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence for distributed light sensing in the skin of cuttlefish, Sepia officinalis.
    Mäthger LM; Roberts SB; Hanlon RT
    Biol Lett; 2010 Oct; 6(5):600-3. PubMed ID: 20392722
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cuttlefish Sepia officinalis Preferentially Respond to Bottom Rather than Side Stimuli When Not Allowed Adjacent to Tank Walls.
    Taniguchi DA; Gagnon Y; Wheeler BR; Johnsen S; Jaffe JS
    PLoS One; 2015; 10(10):e0138690. PubMed ID: 26465786
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Disruptive coloration in cuttlefish: a visual perception mechanism that regulates ontogenetic adjustment of skin patterning.
    Barbosa A; Mäthger LM; Chubb C; Florio C; Chiao CC; Hanlon RT
    J Exp Biol; 2007 Apr; 210(Pt 7):1139-47. PubMed ID: 17371913
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Disruptive coloration elicited on controlled natural substrates in cuttlefish, Sepia officinalis.
    Mäthger LM; Chiao CC; Barbosa A; Buresch KC; Kaye S; Hanlon RT
    J Exp Biol; 2007 Aug; 210(Pt 15):2657-66. PubMed ID: 17644680
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanisms and behavioural functions of structural coloration in cephalopods.
    Mäthger LM; Denton EJ; Marshall NJ; Hanlon RT
    J R Soc Interface; 2009 Apr; 6 Suppl 2(Suppl 2):S149-63. PubMed ID: 19091688
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Visual contrast modulates maturation of camouflage body patterning in cuttlefish (Sepia pharaonis).
    Lee YH; Yan HY; Chiao CC
    J Comp Psychol; 2010 Aug; 124(3):261-70. PubMed ID: 20695657
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Camouflage during movement in the European cuttlefish (Sepia officinalis).
    Josef N; Berenshtein I; Fiorito G; Sykes AV; Shashar N
    J Exp Biol; 2015 Nov; 218(Pt 21):3391-8. PubMed ID: 26385328
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.