These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 29271364)
1. Static structure of active Brownian hard disks. de Macedo Biniossek N; Löwen H; Voigtmann T; Smallenburg F J Phys Condens Matter; 2018 Feb; 30(7):074001. PubMed ID: 29271364 [TBL] [Abstract][Full Text] [Related]
2. Mode-coupling theory for tagged-particle motion of active Brownian particles. Reichert J; Mandal S; Voigtmann T Phys Rev E; 2021 Oct; 104(4-1):044608. PubMed ID: 34781467 [TBL] [Abstract][Full Text] [Related]
3. Three-body correlations and conditional forces in suspensions of active hard disks. Härtel A; Richard D; Speck T Phys Rev E; 2018 Jan; 97(1-1):012606. PubMed ID: 29448434 [TBL] [Abstract][Full Text] [Related]
4. Competing effects of rotational diffusivity and activity on finite-sized clusters. Pilla RT; Mani E J Phys Condens Matter; 2022 Apr; 34(24):. PubMed ID: 35334471 [TBL] [Abstract][Full Text] [Related]
6. Clustering and heterogeneous dynamics in a kinetic Monte Carlo model of self-propelled hard disks. Levis D; Berthier L Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062301. PubMed ID: 25019770 [TBL] [Abstract][Full Text] [Related]
7. Mode-coupling theory for active Brownian particles. Liluashvili A; Ónody J; Voigtmann T Phys Rev E; 2017 Dec; 96(6-1):062608. PubMed ID: 29347410 [TBL] [Abstract][Full Text] [Related]
8. Effect of speed fluctuations on the collective dynamics of active disks. Kailasham R; Khair AS Soft Matter; 2023 Oct; 19(40):7764-7774. PubMed ID: 37791487 [TBL] [Abstract][Full Text] [Related]
9. Emergent vortices and phase separation in systems of chiral active particles with dipolar interactions. Liao GJ; Klapp SHL Soft Matter; 2021 Jul; 17(28):6833-6847. PubMed ID: 34223596 [TBL] [Abstract][Full Text] [Related]
10. Inertial effects of self-propelled particles: From active Brownian to active Langevin motion. Löwen H J Chem Phys; 2020 Jan; 152(4):040901. PubMed ID: 32007042 [TBL] [Abstract][Full Text] [Related]
12. Applicability of effective pair potentials for active Brownian particles. Rein M; Speck T Eur Phys J E Soft Matter; 2016 Sep; 39(9):84. PubMed ID: 27628695 [TBL] [Abstract][Full Text] [Related]
13. Frictional active Brownian particles. Nie P; Chattoraj J; Piscitelli A; Doyle P; Ni R; Ciamarra MP Phys Rev E; 2020 Sep; 102(3-1):032612. PubMed ID: 33076034 [TBL] [Abstract][Full Text] [Related]
14. Active Brownian equation of state: metastability and phase coexistence. Levis D; Codina J; Pagonabarraga I Soft Matter; 2017 Nov; 13(44):8113-8119. PubMed ID: 29105717 [TBL] [Abstract][Full Text] [Related]
15. Characterization of MIPS in a suspension of repulsive active Brownian particles through dynamical features. Martin-Roca J; Martinez R; Alexander LC; Diez AL; Aarts DGAL; Alarcon F; Ramírez J; Valeriani C J Chem Phys; 2021 Apr; 154(16):164901. PubMed ID: 33940816 [TBL] [Abstract][Full Text] [Related]
16. Phase separation and large deviations of lattice active matter. Whitelam S; Klymko K; Mandal D J Chem Phys; 2018 Apr; 148(15):154902. PubMed ID: 29679965 [TBL] [Abstract][Full Text] [Related]
17. Clustering and phase behaviour of attractive active particles with hydrodynamics. Navarro RM; Fielding SM Soft Matter; 2015 Oct; 11(38):7525-46. PubMed ID: 26278520 [TBL] [Abstract][Full Text] [Related]
18. Dynamical self-assembly of dipolar active Brownian particles in two dimensions. Liao GJ; Hall CK; Klapp SHL Soft Matter; 2020 Mar; 16(9):2208-2223. PubMed ID: 32090218 [TBL] [Abstract][Full Text] [Related]
19. Brownian dynamics mean first passage time of two hard disks diffusing in a channel. Mon KK J Chem Phys; 2009 May; 130(18):184701. PubMed ID: 19449937 [TBL] [Abstract][Full Text] [Related]
20. Clustering and phase separation of circle swimmers dispersed in a monolayer. Liao GJ; Klapp SHL Soft Matter; 2018 Oct; 14(38):7873-7882. PubMed ID: 30221296 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]