These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 29271460)

  • 1. An intramolecular tryptophan-condensation approach for peptide stapling.
    Hui EY; Rout B; Tan YS; Verma CS; Chan KP; Johannes CW
    Org Biomol Chem; 2018 Jan; 16(3):389-392. PubMed ID: 29271460
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluating force field accuracy with long-time simulations of a β-hairpin tryptophan zipper peptide.
    Hayre NR; Singh RR; Cox DL
    J Chem Phys; 2011 Jan; 134(3):035103. PubMed ID: 21261392
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tryptophan rich peptides: influence of indole rings on backbone conformation.
    Mahalakshmi R; Sengupta A; Raghothama S; Shamala N; Balaram P
    Biopolymers; 2007; 88(1):36-54. PubMed ID: 17091496
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Composition-dependent multivalency of peptide-peptide interactions revealed by tryptophan-scanning mutagenesis.
    Yu L; Zheng Y; Fang X; Zou Y; Wang C; Yang Y; Wang C
    J Pept Sci; 2021 Jun; 27(6):e3310. PubMed ID: 33660352
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction of indole derivatives and tryptophan peptides with interfaces of sodium dodecyl sulfate micelles.
    Imamura T; Konishi K; Konishi K
    J Pept Sci; 2006 Jun; 12(6):403-11. PubMed ID: 16355438
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insight into indole interactions from alkali metal chloride effects on a tryptophan zipper beta-hairpin peptide.
    Dempsey CE; Mason PE
    J Am Chem Soc; 2006 Mar; 128(9):2762-3. PubMed ID: 16506730
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Method to Calculate the Relative Binding Free Energy Differences of α-Helical Stapled Peptides.
    Valiente PA; Becerra D; Kim PM
    J Org Chem; 2020 Feb; 85(3):1644-1651. PubMed ID: 31893470
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the foldability of tryptophan-containing tetra- and pentapeptides: an exhaustive molecular dynamics study.
    Georgoulia PS; Glykos NM
    J Phys Chem B; 2013 May; 117(18):5522-32. PubMed ID: 23597287
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Peptide insertion, positioning, and stabilization in a membrane: insight from an all-atom molecular dynamics simulation.
    Babakhani A; Gorfe AA; Gullingsrud J; Kim JE; Andrew McCammon J
    Biopolymers; 2007 Apr 5-15; 85(5-6):490-7. PubMed ID: 17274025
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Double annulative cascade of tryptophan-containing peptides triggered by selectfluor.
    Tréguier B; Roche SP
    Org Lett; 2014 Jan; 16(1):278-81. PubMed ID: 24328461
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insight into the environment of tryptophan in a hydrophobic model peptide upon aggregation and interaction with lipid vesicles: a steady state and time resolved fluorescence study.
    Joseph M; Nagaraj R
    Indian J Biochem Biophys; 1998 Apr; 35(2):67-75. PubMed ID: 9753864
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aromatic interactions in tryptophan-containing peptides: crystal structures of model tryptophan peptides and phenylalanine analogs.
    Sengupta A; Mahalakshmi R; Shamala N; Balaram P
    J Pept Res; 2005 Jan; 65(1):113-29. PubMed ID: 15686542
    [TBL] [Abstract][Full Text] [Related]  

  • 13. C-mannosylation in the hypertrehalosaemic hormone from the stick insect Carausius morosus.
    Munte CE; Gäde G; Domogalla B; Kremer W; Kellner R; Kalbitzer HR
    FEBS J; 2008 Mar; 275(6):1163-73. PubMed ID: 18266868
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystallographic characterization of tryptophan-containing peptide 3(10)-helices.
    George C; Flippen-Anderson JL; Bianco A; Crisma M; Formaggio F; Toniolo C
    Pept Res; 1996; 9(6):315-21. PubMed ID: 9048426
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Peptide Stapling Strategy with Built-In Fluorescence by Direct Late-Stage C(sp
    Liu J; Liu X; Zhang F; Qu J; Sun H; Zhu Q
    Chemistry; 2020 Dec; 26(68):16122-16128. PubMed ID: 32864789
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A tryptophan-rich hexapeptide inhibits nucleic acid destabilization chaperoned by the HIV-1 nucleocapsid protein.
    Raja C; Ferner J; Dietrich U; Avilov S; Ficheux D; Darlix JL; de Rocquigny H; Schwalbe H; Mély Y
    Biochemistry; 2006 Aug; 45(30):9254-65. PubMed ID: 16866372
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemoselective Peptide Modification via Photocatalytic Tryptophan β-Position Conjugation.
    Yu Y; Zhang LK; Buevich AV; Li G; Tang H; Vachal P; Colletti SL; Shi ZC
    J Am Chem Soc; 2018 Jun; 140(22):6797-6800. PubMed ID: 29762027
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tryptophan sidechain dynamics in hydrophobic oligopeptides determined by use of 13C nuclear magnetic resonance spectroscopy.
    Weaver AJ; Kemple MD; Prendergast FG
    Biophys J; 1988 Jul; 54(1):1-15. PubMed ID: 3416021
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anomalous temperature fluorescence quenching of N-Trp terminal peptides.
    Brancaleon L; Crippa PR; Diemmi D
    Biopolymers; 1995 Dec; 36(6):723-33. PubMed ID: 8555420
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New peptide architectures through C-H activation stapling between tryptophan-phenylalanine/tyrosine residues.
    Mendive-Tapia L; Preciado S; García J; Ramón R; Kielland N; Albericio F; Lavilla R
    Nat Commun; 2015 May; 6():7160. PubMed ID: 25994485
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.