These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 29271465)

  • 1. Mechanisms of the oxygen reduction reaction on B- and/or N-doped carbon nanomaterials with curvature and edge effects.
    Zou X; Wang L; Yakobson BI
    Nanoscale; 2018 Jan; 10(3):1129-1134. PubMed ID: 29271465
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of Dimensionality and Doping in Quasi-"One-Dimensional (1-D)" Nitrogen-Doped Graphene Nanoribbons on the Oxygen Reduction Reaction.
    Kundu S; Malik B; Pattanayak DK; Pillai VK
    ACS Appl Mater Interfaces; 2017 Nov; 9(44):38409-38418. PubMed ID: 29028352
    [TBL] [Abstract][Full Text] [Related]  

  • 3. From two-dimension to one-dimension: the curvature effect of silicon-doped graphene and carbon nanotubes for oxygen reduction reaction.
    Zhang P; Hou X; Mi J; He Y; Lin L; Jiang Q; Dong M
    Phys Chem Chem Phys; 2014 Sep; 16(33):17479-86. PubMed ID: 25020255
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The synergistic effect of carbon edges and dopants towards efficient oxygen reduction reaction.
    Xiang T; Wu Z; Sun Z; Cheng C; Wang W; Liu Z; Yang J; Li B
    J Colloid Interface Sci; 2022 Mar; 610():486-494. PubMed ID: 34823848
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Creation of Ge-Nx-Cy Configures in Carbon Nanotubes: Origin of Enhanced Electrocatalytic Performance for Oxygen Reduction Reaction.
    She X; Li Q; Ma N; Sun J; Jing D; Chen C; Yang L; Yang D
    ACS Appl Mater Interfaces; 2016 Apr; 8(16):10383-91. PubMed ID: 27077893
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Graphyne nanotubes as electrocatalysts for oxygen reduction reaction: the effect of doping elements on the catalytic mechanisms.
    Chen X
    Phys Chem Chem Phys; 2015 Nov; 17(43):29340-3. PubMed ID: 26473179
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design principles of nitrogen-doped graphene nanoribbons as highly effective bifunctional catalysts for Li-O
    Zheng T; Ren Y; Han X; Zhang J
    Phys Chem Chem Phys; 2022 Sep; 24(37):22589-22598. PubMed ID: 36102806
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Edges of graphene and carbon nanotubes with high catalytic performance for the oxygen reduction reaction.
    Xu Z; Fan X; Li H; Fu H; Lau WM; Zhao X
    Phys Chem Chem Phys; 2017 Aug; 19(31):21003-21011. PubMed ID: 28745738
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probing Heteroatomic Dopant-Activity Synergy over Co
    Zhang A; Wu J; Xue L; Yan S; Zeng S
    Inorg Chem; 2020 Jan; 59(1):403-414. PubMed ID: 31833358
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A universal descriptor based on p
    Ma J; Zhi Q; Gong L; Shen Y; Sun D; Guo Y; Zhang L; Xia Z
    Nanoscale; 2020 Oct; 12(37):19375-19382. PubMed ID: 32945308
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxygen-Molecule Adsorption and Dissociation on BCN Graphene: A First-Principles Study.
    Tang S; Wu W; Liu L; Gu J
    Chemphyschem; 2017 Jan; 18(1):101-110. PubMed ID: 27685829
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rational design of the carbon doping of hexagonal boron nitride for oxygen activation and oxidative desulfurization.
    Li H; Fu W; Yin J; Zhang J; Li Y; Jiang D; Lv N; Zhu W
    Phys Chem Chem Phys; 2020 Nov; 22(42):24310-24319. PubMed ID: 33107514
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrochemical oxygen reduction mechanism on FeN
    Zhang J; Wang Y; Zhu Z; Zhang M
    J Mol Model; 2017 May; 23(5):170. PubMed ID: 28451882
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts.
    Guo D; Shibuya R; Akiba C; Saji S; Kondo T; Nakamura J
    Science; 2016 Jan; 351(6271):361-5. PubMed ID: 26798009
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activation of Graphenic Carbon Due to Substitutional Doping by Nitrogen: Mechanistic Understanding from First Principles.
    Bhattacharjee J
    J Phys Chem Lett; 2015 May; 6(9):1653-60. PubMed ID: 26263329
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theoretical predictions for hexagonal BN based nanomaterials as electrocatalysts for the oxygen reduction reaction.
    Lyalin A; Nakayama A; Uosaki K; Taketsugu T
    Phys Chem Chem Phys; 2013 Feb; 15(8):2809-20. PubMed ID: 23338859
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theoretical Study on a Nitrogen-Doped Graphene Nanoribbon with Edge Defects as the Electrocatalyst for Oxygen Reduction Reaction.
    Xie Z; Chen M; Peera SG; Liu C; Yang H; Qi X; Kumar UP; Liang T
    ACS Omega; 2020 Mar; 5(10):5142-5149. PubMed ID: 32201801
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Boron/nitrogen co-doped helically unzipped multiwalled carbon nanotubes as efficient electrocatalyst for oxygen reduction.
    Zehtab Yazdi A; Fei H; Ye R; Wang G; Tour J; Sundararaj U
    ACS Appl Mater Interfaces; 2015 Apr; 7(14):7786-94. PubMed ID: 25793636
    [TBL] [Abstract][Full Text] [Related]  

  • 19. O2 and H2O2 transformation steps for the oxygen reduction reaction catalyzed by graphitic nitrogen-doped carbon nanotubes in acidic electrolyte from first principles calculations.
    Li Y; Zhong G; Yu H; Wang H; Peng F
    Phys Chem Chem Phys; 2015 Sep; 17(34):21950-9. PubMed ID: 26234475
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fast prediction of oxygen reduction reaction activity on carbon nanotubes with a localized geometric descriptor.
    Yang K; Zaffran J; Yang B
    Phys Chem Chem Phys; 2020 Jan; 22(2):890-895. PubMed ID: 31844873
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.