These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 29271467)

  • 1. Electronic versus steric effects of pyridinophane ligands on Pd(iii) complexes.
    Tang F; Park SV; Rath NP; Mirica LM
    Dalton Trans; 2018 Jan; 47(4):1151-1158. PubMed ID: 29271467
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Late first-row transition metal complexes of a tetradentate pyridinophane ligand: electronic properties and reactivity implications.
    Khusnutdinova JR; Luo J; Rath NP; Mirica LM
    Inorg Chem; 2013 Apr; 52(7):3920-32. PubMed ID: 23517006
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stable mononuclear organometallic Pd(III) complexes and their C-C bond formation reactivity.
    Khusnutdinova JR; Rath NP; Mirica LM
    J Am Chem Soc; 2010 Jun; 132(21):7303-5. PubMed ID: 20462195
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The conformational flexibility of the tetradentate ligand (tBu)N4 is essential for the stabilization of ((tBu)N4)Pd(III) complexes.
    Khusnutdinova JR; Rath NP; Mirica LM
    Inorg Chem; 2014 Dec; 53(24):13112-29. PubMed ID: 25424045
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection and Characterization of Mononuclear Pd(I) Complexes Supported by N2S2 and N4 Tetradentate Ligands.
    Luo J; Tran GN; Rath NP; Mirica LM
    Inorg Chem; 2020 Nov; 59(21):15659-15669. PubMed ID: 33058678
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved Oxidative C-C Bond Formation Reactivity of High-Valent Pd Complexes Supported by a Pseudo-Tridentate Ligand.
    Schultz JW; Rath NP; Mirica LM
    Inorg Chem; 2020 Aug; 59(16):11782-11792. PubMed ID: 32799488
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The aerobic oxidation of a Pd(II) dimethyl complex leads to selective ethane elimination from a Pd(III) intermediate.
    Khusnutdinova JR; Rath NP; Mirica LM
    J Am Chem Soc; 2012 Feb; 134(4):2414-22. PubMed ID: 22239690
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mononuclear Rhodium(II) and Iridium(II) Complexes Supported by Tetradentate Pyridinophane Ligands.
    Fuchigami K; Rath NP; Mirica LM
    Inorg Chem; 2017 Aug; 56(16):9404-9408. PubMed ID: 28766945
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural and reactivity comparison of analogous organometallic Pd(III) and Pd(IV) complexes.
    Tang F; Qu F; Khusnutdinova JR; Rath NP; Mirica LM
    Dalton Trans; 2012 Dec; 41(46):14046-50. PubMed ID: 23080370
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved synthesis of symmetrically & asymmetrically N-substituted pyridinophane derivatives.
    Wessel AJ; Schultz JW; Tang F; Duan H; Mirica LM
    Org Biomol Chem; 2017 Nov; 15(46):9923-9931. PubMed ID: 29164216
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interplay between the Conformational Flexibility and Photoluminescent Properties of Mononuclear Pyridinophanecopper(I) Complexes.
    Patil PH; Filonenko GA; Lapointe S; Fayzullin RR; Khusnutdinova JR
    Inorg Chem; 2018 Aug; 57(16):10009-10027. PubMed ID: 30052030
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Perturbation of the O-U-O Angle in Uranyl by Coordination to a 12-Membered Macrocycle.
    Pedrick EA; Schultz JW; Wu G; Mirica LM; Hayton TW
    Inorg Chem; 2016 Jun; 55(11):5693-701. PubMed ID: 27177203
    [TBL] [Abstract][Full Text] [Related]  

  • 13. C-H bond activation
    Bouley BS; Tang F; Bae DY; Mirica LM
    Chem Sci; 2023 Apr; 14(14):3800-3808. PubMed ID: 37035706
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Steric Effect on the Nucleophilic Reactivity of Nickel(III) Peroxo Complexes.
    Kim J; Shin B; Kim H; Lee J; Kang J; Yanagisawa S; Ogura T; Masuda H; Ozawa T; Cho J
    Inorg Chem; 2015 Jul; 54(13):6176-83. PubMed ID: 26068376
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ethylene binding in mono- and binuclear Cu
    Karimata A; Gridneva T; Patil PH; Fayzullin RR; Khaskin E; Lapointe S; Garcia-Roca A; Khusnutdinova JR
    Dalton Trans; 2022 Sep; 51(35):13426-13434. PubMed ID: 35993504
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Iron(III) complexes of sterically hindered tetradentate monophenolate ligands as functional models for catechol 1,2-dioxygenases: the role of ligand stereoelectronic properties.
    Velusamy M; Mayilmurugan R; Palaniandavar M
    Inorg Chem; 2004 Oct; 43(20):6284-93. PubMed ID: 15446874
    [TBL] [Abstract][Full Text] [Related]  

  • 17. cis-Dioxorhenium(V/VI) Complexes Supported by Neutral Tetradentate N
    Ng VY; Tse CW; Guan X; Chang X; Yang C; Low KH; Lee HK; Huang JS; Che CM
    Inorg Chem; 2017 Dec; 56(24):15066-15080. PubMed ID: 29190093
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Iron(III) complexes of tripodal tetradentate 4N ligands as functional models for catechol dioxygenases: the electronic vs. steric effect on extradiol cleavage.
    Balamurugan M; Vadivelu P; Palaniandavar M
    Dalton Trans; 2014 Oct; 43(39):14653-68. PubMed ID: 25143993
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Iron(III) complexes of tripodal monophenolate ligands as models for non-heme catechol dioxygenase enzymes: correlation of dioxygenase activity with ligand stereoelectronic properties.
    Mayilmurugan R; Visvaganesan K; Suresh E; Palaniandavar M
    Inorg Chem; 2009 Sep; 48(18):8771-83. PubMed ID: 19694480
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unraveling the Role of a Flexible Tetradentate Ligand in the Aerobic Oxidative Carbon-Carbon Bond Formation with Palladium Complexes: A Computational Mechanistic Study.
    Peng Q; Wang Z; Zarić SD; Brothers EN; Hall MB
    J Am Chem Soc; 2018 Mar; 140(11):3929-3939. PubMed ID: 29444572
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.