These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 29271516)

  • 41. Compliant Iontronic Triboelectric Gels with Phase-Locked Structure Enabled by Competitive Hydrogen Bonding.
    Du G; Shao Y; Luo B; Liu T; Zhao J; Qin Y; Wang J; Zhang S; Chi M; Gao C; Liu Y; Cai C; Wang S; Nie S
    Nanomicro Lett; 2024 Apr; 16(1):170. PubMed ID: 38592515
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Synergetic Monitoring of both Physiological Pressure and Epidermal Biopotential Based on a Simplified on-Skin-Printed Sensor Modality.
    Song Y; Ren W; Zhang Y; Liu Q; Peng Z; Wu X; Wang Z
    Small; 2023 Nov; 19(45):e2303301. PubMed ID: 37423977
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Recent advances in wearable iontronic sensors for healthcare applications.
    Choi SG; Kang SH; Lee JY; Park JH; Kang SK
    Front Bioeng Biotechnol; 2023; 11():1335188. PubMed ID: 38162187
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Emerging Iontronic Neural Devices for Neuromorphic Sensory Computing.
    Dai S; Liu X; Liu Y; Xu Y; Zhang J; Wu Y; Cheng P; Xiong L; Huang J
    Adv Mater; 2023 Sep; 35(39):e2300329. PubMed ID: 36891745
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Electric Double Layer Based Epidermal Electronics for Healthcare and Human-Machine Interface.
    Gao Y; Zhang H; Song B; Zhao C; Lu Q
    Biosensors (Basel); 2023 Aug; 13(8):. PubMed ID: 37622873
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Ultrafast, autonomous self-healable iontronic skin exhibiting piezo-ionic dynamics.
    Boahen EK; Pan B; Kweon H; Kim JS; Choi H; Kong Z; Kim DJ; Zhu J; Ying WB; Lee KJ; Kim DH
    Nat Commun; 2022 Dec; 13(1):7699. PubMed ID: 36509757
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Iontronic Dynamic Sensor with Broad Bandwidth and Flat Frequency Response Using Controlled Preloading Strategy.
    Guo H; Liu J; Liu H; Yang M; Zhao J; Lu T
    ACS Nano; 2024 Feb; ():. PubMed ID: 38315123
    [TBL] [Abstract][Full Text] [Related]  

  • 48. All-Fabric Ultrathin Capacitive Sensor with High Pressure Sensitivity and Broad Detection Range for Electronic Skin.
    Yu P; Li X; Li H; Fan Y; Cao J; Wang H; Guo Z; Zhao X; Wang Z; Zhu G
    ACS Appl Mater Interfaces; 2021 May; 13(20):24062-24069. PubMed ID: 33977715
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Skin-Friendly Electronics for Acquiring Human Physiological Signatures.
    Zhang Y; Tao TH
    Adv Mater; 2019 Dec; 31(49):e1905767. PubMed ID: 31621959
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A bio-inspired tactile nociceptor constructed by integrating wearable sensing paper and a VO
    Xia Q; Qin Y; Qiu P; Zheng A; Zhang X
    J Mater Chem B; 2022 Mar; 10(12):1991-2000. PubMed ID: 35233588
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A Dual-Responsive Artificial Skin for Tactile and Touchless Interfaces.
    Wang HL; Chen T; Zhang B; Wang G; Yang X; Wu K; Wang Y
    Small; 2023 May; 19(21):e2206830. PubMed ID: 36700923
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Ultralow-Latency Textile Sensors for Wearable Interfaces with a Human-in-Loop Sensing Approach.
    Bhat A; Ambrose JW; Yeow RC
    Soft Robot; 2023 Apr; 10(2):431-442. PubMed ID: 36318510
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Flexible Sensing Electronics for Wearable/Attachable Health Monitoring.
    Wang X; Liu Z; Zhang T
    Small; 2017 Jul; 13(25):. PubMed ID: 28306196
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Kirigami-Inspired Pressure Sensors for Wearable Dynamic Cardiovascular Monitoring.
    Meng K; Xiao X; Liu Z; Shen S; Tat T; Wang Z; Lu C; Ding W; He X; Yang J; Chen J
    Adv Mater; 2022 Sep; 34(36):e2202478. PubMed ID: 35767870
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Human Skin-Inspired Electronic Sensor Skin with Electromagnetic Interference Shielding for the Sensation and Protection of Wearable Electronics.
    Pu JH; Zha XJ; Tang LS; Bai L; Bao RY; Liu ZY; Yang MB; Yang W
    ACS Appl Mater Interfaces; 2018 Nov; 10(47):40880-40889. PubMed ID: 30387980
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A sub-1V, microwatt power-consumption iontronic pressure sensor based on organic electrochemical transistors.
    Wang X; Meng X; Zhu Y; Ling H; Chen Y; Li Z; Hartel MC; Dokmeci MR; Zhang S; Khademhosseini A
    IEEE Electron Device Lett; 2021 Jan; 42(1):46-49. PubMed ID: 33746352
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Metal oxide semiconductor nanomembrane-based soft unnoticeable multifunctional electronics for wearable human-machine interfaces.
    Sim K; Rao Z; Zou Z; Ershad F; Lei J; Thukral A; Chen J; Huang QA; Xiao J; Yu C
    Sci Adv; 2019 Aug; 5(8):eaav9653. PubMed ID: 31414044
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A Multi-Functional Physiological Hybrid-Sensing E-Skin Integrated Interface for Wearable IoT Applications.
    Lee K; Chae HY; Park K; Lee Y; Cho S; Ko H; Kim JJ
    IEEE Trans Biomed Circuits Syst; 2019 Dec; 13(6):1535-1544. PubMed ID: 31613778
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Micropyramid Array Bimodal Electronic Skin for Intelligent Material and Surface Shape Perception Based on Capacitive Sensing.
    Niu H; Wei X; Li H; Yin F; Wang W; Seong RS; Shin YK; Yao Z; Li Y; Kim ES; Kim NY
    Adv Sci (Weinh); 2024 Jan; 11(3):e2305528. PubMed ID: 38029346
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A Stretchable Yarn Embedded Triboelectric Nanogenerator as Electronic Skin for Biomechanical Energy Harvesting and Multifunctional Pressure Sensing.
    Dong K; Wu Z; Deng J; Wang AC; Zou H; Chen C; Hu D; Gu B; Sun B; Wang ZL
    Adv Mater; 2018 Oct; 30(43):e1804944. PubMed ID: 30256476
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.